Terms and Conditions of Use:

All of the information, data and computer software ("information") presented on this web site is for general information only. While every effort will be made to insure its accuracy, this information should not be used or relied on for any specific application without independent, competent professional examination and verification of its accuracy, suitability and applicability by a licensed professional. Anyone making use of this information does so at his or her own risk and assumes any and all liability resulting from such use. The entire risk as to quality or usability of the information contained within is with the reader. In no event will this web page or webmaster be held liable, nor does this web page or its webmaster provide insurance against liability, for any damages including lost profits, lost savings or any other incidental or consequential damages arising from the use or inability to use the information contained within.

This site is not an official site of Prentice-Hall, Pile Buck, the University of Tennessee at Chattanooga, or Vulcan Foundation Equipment. All references to sources of software, equipment, parts, service or repairs do not constitute an endorsement.
Soil Mechanics Level I

Module 1 - Unified Soil Classification System

Study Guide
SOIL MECHANICS - LEVEL I
MODULE 1
UNIFIED SOIL CLASSIFICATION
STUDY GUIDE

CONTENTS

Instructions ... V
Part A - Terms and Definitions 1
Part B - USCS Laboratory Data 43
Part C - USCS and Field Procedures 102
Appendix 1 - References 141
Appendix 2 - Glossary 143
Appendix 3 - Soil Mechanics Note No. 6 149
Appendix 4 - Narrative/Slide Description - Part A. 191
Appendix 5 - Narrative/Slide Description - Part B. 205
Appendix 6 - Narrative/Slide Description - Part C. 221
INTRODUCTION

This training module on the Unified Soil Classification is one of 3 modules of the Soil Mechanics Level I course. The modules in this course are listed below:

1. Unified Soil Classification System
2. AASHTO (American Association of State Highway and Transportation Officials)
3. USDA Textural Soil Classification

INSTRUCTION

The procedure used in a slide/audio cassette presentation is to project a picture while playing the accompanying cassette. The narration corresponds with what you see on the screen. During the presentation you will be asked to STOP the machine and do activities in your Study Guide. These activities offer a variety of learning experiences and give you feedback on your ability to accomplish the related module objectives.

Module 1 has been divided into three basic parts, A - C. Each part has specific objectives that need to be accomplished before continuing to the next part. The ability to review and study your material at your desk, while traveling, or in an easy chair is what makes a self-paced training package so beneficial. If you have difficulty with a specific area, study, re-study, and, if necessary, get someone to help you. DO NOT continue until you can complete each part.

You should complete each part of this module as follows;

1. Read the objectives.
2. Run the slide/audio cassette, stopping it when you need to work in the Study Guide.
3. Study and review all references.

If you have difficulty in a specific area, contact your State Engineering Staff, through your supervisor, for assistance on Modules 1 and 2 or the Soils Staff, again through your supervisor, for Module 3.

CONTENTS

3 Slide trays
3 Audio cassettes
1 Study Guide
SOIL MECHANICS -- LEVEL I
MODULE 1
UNIFIED SOIL CLASSIFICATION SYSTEM
PART A
TERMS AND DEFINITIONS
STUDY GUIDE
PART A - TERMS AND DEFINITIONS

ACTIVITY 1 - Objectives

At the completion of Part A you will be able to:

1. State conceptually from a list of terms all standard definitions needed to classify a soil in the Unified Soil Classification System.

2. Define the four states of consistency of a soil mass.

3. Describe how each of the four basic soil properties needed to classify a soil in the Unified Soil Classification System are determined in the laboratory.
PART A - TERMS AND DEFINITIONS

ACTIVITY 2 - TABLE OF COMMONLY USED GRAVEL SIEVE SIZES

3 inch
2 inch
1-1/2 inch
1 inch
3/4 inch
1/2 inch
3/8 inch

An illustration of a 3-inch sieve is shown on the next page.
3-Inch Sieve

START PLAYER WHEN YOU HAVE FINISHED
PART A - TERMS AND DEFINITIONS

ACTIVITY 3 - TABLE OF COMMONLY USED SAND SIEVE SIZES

Listed below are sieves and their sizes commonly used by Soil Conservation Service soil mechanics laboratories for sand sieve analysis:

<table>
<thead>
<tr>
<th>Sieve number</th>
<th>Opening size, millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4</td>
<td>4.76</td>
</tr>
<tr>
<td>No. 10</td>
<td>2.0</td>
</tr>
<tr>
<td>No. 20</td>
<td>0.84</td>
</tr>
<tr>
<td>No. 40</td>
<td>0.42</td>
</tr>
<tr>
<td>No. 60</td>
<td>0.25</td>
</tr>
<tr>
<td>No. 140</td>
<td>0.105</td>
</tr>
</tbody>
</table>

Many other testing organizations use different sieve series, such as No. 8, No. 16, No. 30, No. 50, No. 100. The difference is not important in the information obtained. As long as the entire range of particle sizes present is represented, and the sieves are about equally spaced in sizes, any standard set of sieves is satisfactory.

An illustration of the dimensions of a No. 4 sieve is shown on the next page.
Number 4 Sieve

4 equal size openings of 0.187 inch or 4.76 mm

1 inch

START PLAYER WHEN YOU HAVE FINISHED
Activity 4 - Percent Retained Sieve Analysis Data Presentation

These data are typical results of those from a sieve analysis of a soil. The
percentage of the dry weight of the total soil sample retained on each sieve
is calculated as shown:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Weight retained, pounds</th>
<th>Percent retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 inch</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1-1/2 inch</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1 inch</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>No. 4</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>No. 10</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>No. 20</td>
<td>55</td>
<td>11</td>
</tr>
<tr>
<td>No. 40</td>
<td>35</td>
<td>7</td>
</tr>
<tr>
<td>No. 60</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>No. 140</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>No. 200</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Pan</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>500 lbs.</td>
<td>100%</td>
</tr>
</tbody>
</table>

Example Computation: 40 lbs were retained on the No. 140 sieve. Divide 40
by the total weight of the sample (500 lbs). \(\frac{40}{500} = 0.08 \).

To convert to percent, multiply by 100. \(0.08 \times 100 = 8\% \).
PART A - TERMS AND DEFINITIONS

ACTIVITY 5 - CONVERSION OF PERCENT RETAINED TO PERCENT FINER

The conversion of percentage of soil retained on each sieve to percentage finer than each sieve follows:

For example, the 3-inch sieve: If 100 percent of the soil sample is placed into the set of sieves, and 0 percent was retained on the 3-inch sieve, then 100 percent passed through the 3-inch sieve, or 100 percent was finer than the 3-inch sieve.

For the 2-inch sieve: Note the percentage of the soil that passed through the 3-inch sieve, and was retained on this sieve. Subtract the percentage that was retained on the 2-inch sieve from the percentage passing the 3-inch sieve to obtain the percent finer, or 100 - 2 = 98 percent.

In another example, 72 percent was finer than the No. 4 sieve and 9 percent was retained on the No. 10 sieve. In converting to percent finer for the No. 10, 72 percent - 9 percent = 63 percent.

The process is completed for all the sieves, with the following results:

<table>
<thead>
<tr>
<th>SIEVE</th>
<th>PERCENT RETAINED</th>
<th>PERCENT FINER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2 inch</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>1-1/2 inch</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>1 inch</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>No. 4</td>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td>No. 10</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>No. 20</td>
<td>11</td>
<td>52</td>
</tr>
<tr>
<td>No. 40</td>
<td>7</td>
<td>45</td>
</tr>
<tr>
<td>No. 60</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>No. 140</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>No. 200</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Pan</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Complete the problem on the next page.
PART A - TERMS AND DEFINITIONS

PROBLEM

A dry soil sample weighing 4.8 lbs was sieved and the following data obtained. Using the procedures in Activities 4 and 5, complete the following:

(1) Convert the weight retained on each sieve to a percent retained, and

(2) Convert percent retained to percent finer. Round answers to nearest 0.1 percent.

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Weight Retained, pounds</th>
<th>Percent Retained</th>
<th>Percent Finer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ½ inch</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 inch</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4 inch</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 inch</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 inch</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 4</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 10</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 20</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 40</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 60</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 140</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 200</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART A - TERMS AND DEFINITIONS

NOTES
SOLUTION

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Weight Retained, pounds</th>
<th>Percent Retained</th>
<th>Percent Finer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1½ inch</td>
<td>0.19</td>
<td>4.0</td>
<td>96.0</td>
</tr>
<tr>
<td>1 inch</td>
<td>0.10</td>
<td>2.1</td>
<td>93.9</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>0.20</td>
<td>4.2</td>
<td>89.7</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>0.24</td>
<td>5.0</td>
<td>84.7</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>0.14</td>
<td>2.9</td>
<td>81.8</td>
</tr>
<tr>
<td>No. 4</td>
<td>0.43</td>
<td>9.0</td>
<td>72.8</td>
</tr>
<tr>
<td>No. 10</td>
<td>0.53</td>
<td>11.0</td>
<td>61.8</td>
</tr>
<tr>
<td>No. 20</td>
<td>0.58</td>
<td>12.1</td>
<td>49.7</td>
</tr>
<tr>
<td>No. 40</td>
<td>0.42</td>
<td>8.8</td>
<td>40.9</td>
</tr>
<tr>
<td>No. 60</td>
<td>0.40</td>
<td>8.3</td>
<td>32.6</td>
</tr>
<tr>
<td>No. 140</td>
<td>0.67</td>
<td>14.0</td>
<td>18.6</td>
</tr>
<tr>
<td>No. 200</td>
<td>0.23</td>
<td>4.8</td>
<td>13.8*</td>
</tr>
<tr>
<td>Pan</td>
<td>0.67</td>
<td>14.0*</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.8</td>
<td>100.2</td>
<td></td>
</tr>
</tbody>
</table>

* Normally, these two entries are the same. However, because of round off error, the 0.2 percent difference is negligible. Differences greater than 0.5 percent however, should be resolved.
PART A - TERMS AND DEFINITIONS

ACTIVITY 6 - COMPLETE GRAIN SIZE ANALYSIS

A grain-size distribution analysis is the combination of three separate analyses. The gravel sieve analysis is performed on the particles smaller than 3 inches and larger than No. 10 sieve. The sand sieve analysis is performed on particles smaller than the No. 10 sieve and larger than the No. 200 sieve. The hydrometer analysis is also performed on the portion of the sample smaller than No. 10 sieve. Typical data follow:

<table>
<thead>
<tr>
<th>Gravel sieve analysis</th>
<th>Percent finer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>100</td>
</tr>
<tr>
<td>2 inch</td>
<td>98</td>
</tr>
<tr>
<td>1-1/2 inch</td>
<td>96</td>
</tr>
<tr>
<td>1 inch</td>
<td>92</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>90</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>85</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>81</td>
</tr>
<tr>
<td>No. 4</td>
<td>72</td>
</tr>
<tr>
<td>No. 10 *</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand sieve analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
</tr>
<tr>
<td>No. 20</td>
</tr>
<tr>
<td>No. 40</td>
</tr>
<tr>
<td>No. 60</td>
</tr>
<tr>
<td>No. 140</td>
</tr>
<tr>
<td>No. 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrometer analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 200</td>
</tr>
<tr>
<td>0.05 millimeter</td>
</tr>
<tr>
<td>0.02 millimeter</td>
</tr>
<tr>
<td>0.005 millimeter</td>
</tr>
<tr>
<td>0.002 millimeter</td>
</tr>
</tbody>
</table>

Because the sand sieve and hydrometer analyses were not performed on the entire sample, but just on the portion smaller than the No. 10 sieve, the percentages for the smaller sieves must be adjusted. The adjustment is made by multiplying each of these figures by 61 percent. (THE PERCENT OF THE SAMPLE FINER THAN THE NO. 10 SIEVE). The corrected total gradation is tabulated on the next page.

*Note that the break between gravels and sands is the No. 4 sieve. However the No. 10 sieve is used for both the gravel and sand sieve analysis.
Part A - Terms and Definitions

Activity 6 - Contd.

<table>
<thead>
<tr>
<th>Size</th>
<th>Adjusted percent finer for 61 percent finer than No. 10 Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>100</td>
</tr>
<tr>
<td>2 inch</td>
<td>98</td>
</tr>
<tr>
<td>1-1/2 inch</td>
<td>96</td>
</tr>
<tr>
<td>1 inch</td>
<td>92</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>90</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>85</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>81</td>
</tr>
<tr>
<td>No. 4</td>
<td>72</td>
</tr>
<tr>
<td>No. 10</td>
<td>61</td>
</tr>
<tr>
<td>No. 20</td>
<td>50</td>
</tr>
<tr>
<td>No. 40</td>
<td>43</td>
</tr>
<tr>
<td>No. 60</td>
<td>38</td>
</tr>
<tr>
<td>No. 140</td>
<td>30</td>
</tr>
<tr>
<td>No. 200</td>
<td>28</td>
</tr>
<tr>
<td>0.05</td>
<td>25</td>
</tr>
<tr>
<td>0.02</td>
<td>18</td>
</tr>
<tr>
<td>0.005</td>
<td>10</td>
</tr>
<tr>
<td>0.002</td>
<td>7</td>
</tr>
</tbody>
</table>

Start the player when you have finished
PART A - TERMS AND DEFINITIONS

ACTIVITY 7 - GRAIN-SIZE DISTRIBUTION CURVE PLOT

PROBLEM

Using the data given below, the results of a grain-size analysis of a soil, plot the gradation curve of the soil: Use the blank data form on the next page, and draw a smooth curve through the plotted points. Compare your curve with that shown on the page following the blank form.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PERCENT FINER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>100</td>
</tr>
<tr>
<td>2 inch</td>
<td>-</td>
</tr>
<tr>
<td>1-1/2 inch</td>
<td>96</td>
</tr>
<tr>
<td>1 inch</td>
<td>92</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>90</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>85</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>81</td>
</tr>
<tr>
<td>No. 4</td>
<td>72</td>
</tr>
<tr>
<td>No. 10</td>
<td>61</td>
</tr>
<tr>
<td>No. 20</td>
<td>50</td>
</tr>
<tr>
<td>No. 40</td>
<td>43</td>
</tr>
<tr>
<td>No. 60</td>
<td>38</td>
</tr>
<tr>
<td>No. 140</td>
<td>30</td>
</tr>
<tr>
<td>No. 200</td>
<td>28</td>
</tr>
<tr>
<td>0.05 millimeter</td>
<td>25</td>
</tr>
<tr>
<td>0.02 millimeter</td>
<td>18</td>
</tr>
<tr>
<td>0.005 millimeter</td>
<td>10</td>
</tr>
<tr>
<td>0.002 millimeter</td>
<td>7</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

>Type of Sample

Field Sample No.

Sample Location

<table>
<thead>
<tr>
<th>Depth</th>
<th>Geologic Origin</th>
<th>Tested At</th>
<th>Approved By</th>
<th>Date</th>
</tr>
</thead>
</table>

Soil Classification

<table>
<thead>
<tr>
<th>Grain Size Distribution</th>
<th>% by Weight</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>D<sub>50</sub></th>
<th>D<sub>60</sub></th>
<th>D<sub>90</sub></th>
<th>D<sub>94</sub></th>
<th>D<sub>100</sub></th>
</tr>
</thead>
</table>

Percent Fine by Dry Weight

<table>
<thead>
<tr>
<th>U.S. Standard Sieve Size</th>
<th>% Fine</th>
</tr>
</thead>
</table>

Specific Gravity (g_s)

<table>
<thead>
<tr>
<th>(1+<i><i>M</i></i>)</th>
<th><i>N</i></th>
<th><i>P</i></th>
<th>Remarks</th>
</tr>
</thead>
</table>

Atterberg Limits

<table>
<thead>
<tr>
<th>Natural Moisture</th>
<th>LL</th>
<th>PI</th>
<th>PL</th>
</tr>
</thead>
</table>

Soil Shrinkage Limit

<table>
<thead>
<tr>
<th>Undisturbed Condition</th>
<th>Moisture</th>
<th>%</th>
</tr>
</thead>
</table>

Remarks

19
ACTIVITY 8 - WATER CONTENT

DEFINITION AND DISCUSSION

Water content is the ratio, expressed as a percentage, of the weight of water in a given soil mass to the weight of solid particles in the mass.

To determine the water content of a soil sample, a metal moisture can, a scale, and a drying oven are needed. A moist sample is weighed in a metal can. The weight of the can has been predetermined. The sample is then placed in a drying oven that maintains 110 degrees Centigrade for at least 12 hours or until a constant weight is obtained. The can and dry soil are then weighed. The difference between the weight of the wet soil and can and the weight of the dry soil and can is the weight of the water that was in the sample. The weight of dry soil is obtained by subtracting the weight of the can from the final weight of the can plus dry soil.

Water content, \(W\% = \frac{(\text{weight moist soil} + \text{can}) - (\text{weight dry soil} + \text{can})}{(\text{weight dry soil} + \text{can}) - (\text{weight of can})} \times 100 \)

PROBLEMS

Given the following information, calculate the water contents in each sample:

Sample 1

<table>
<thead>
<tr>
<th>Weight Moist Soil + Can</th>
<th>Weight Dry Soil + Can</th>
<th>Can Weight</th>
<th>Weight of Water</th>
<th>Weight of Dry Soil</th>
<th>Water Content, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>514.2 g</td>
<td>335.3 g</td>
<td>124.6 g</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample 2

<table>
<thead>
<tr>
<th>Weight</th>
<th>Weight of</th>
<th>Water Content, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 lbs</td>
<td>1.03 lbs</td>
<td>0.23 lbs</td>
</tr>
</tbody>
</table>

To check your answer, or if you have difficulty completing the exercise, refer to the next page for the solution.
ACTIVITY 8 - Continued

SOLUTIONS

Sample 1

\[w\% = \left(\frac{514.2-335.3}{335.3-124.6} \right) \times 100 \]

\[= \left(\frac{178.9}{210.7} \right) \times 100 \]

\[= 84.9\% \]

Sample 2

\[w\% = \left(\frac{1.25-1.03}{1.03-0.23} \right) \times 100 \]

\[= \left(\frac{0.22}{0.80} \right) \times 100 \]

\[= 27.5\% \]

Note: There are no upper limits on water content. A soil's water content may be greater than 100 percent. Some very plastic clay soils may have water contents over 400 percent.
ACTIVITY 9 - PLASTICITY AND CONSISTENCY DEFINITIONS

DEFINITIONS AND DISCUSSION

PLASTICITY - is the property of soil that allows it to be deformed beyond the point of recovery without cracking or appreciable volume change. It may be described as a "putty-like" behavior where a soil mass may be shaped into different configurations without the soil body cracking and the soil mass holds its shape unsupported after reshaping. Modeling clay would be a type of material that exhibits this property very well. Very sandy soils, very silty soils, and some clay soils cannot be formed into coherent masses at any water content and then re-shaped and remolded. They are non-plastic soils. All soils will have plastic characteristics only over a limited range of water content.

CONSISTENCY - is the relative ease with which a soil can be deformed. Consistency terms are used to describe plastic soils and how their consistency varies with water content. At a high water content, soils will have a liquid-like consistency. At somewhat lesser water content, the soils will be in a plastic state of consistency. At very low water contents, soils will not deform without cracking and are in a semi-solid state of consistency. At extremely low water contents, soils are in a solid state of consistency because further drying of the soils does not result in shrinkage of the soil mass.

Consistency terms may be illustrated with a diagram:

```
SOLID | SEMI-SOLID | PLASTIC | LIQUID
```

The water content at which a soil changes from one state of consistency to another has been arbitrarily defined by a series of laboratory tests. Each test will be described in detail and the significance of each test explained.

Consistency evaluations are based on only the portion of a sample that is finer than the No. 40 sieve.

Note: A diagram that relates consistency, water content, and volume change can also be developed. Such a diagram is shown on the next page. It shows that a soil and water mixture shrinks or reduces in volume as the soil is dried. This occurs from water content above the liquid limit down to the shrinkage limit. No further volume change occurs as the soil is dried to water content below the shrinkage limit.
CONSISTENCY DIAGRAM RELATING WATER CONTENT AND VOLUME CHANGE

LIQUID STATE

LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)

SEMI-SOLID STATE

SHRINKAGE LIMIT (SL)

SOLID STATE

WATER CONTENT

VOLUME CHANGE

PLASTICITY INDEX (PI)
PART A - TERMS AND DEFINITIONS

ACTIVITY 10 - LIQUID LIMIT

DEFINITION AND DISCUSSION

LIQUID LIMIT - is the water content at which a soil changes from liquid to a plastic state of consistency. Obviously, this change in consistency is not an abrupt one. The liquid limit is consequently a somewhat arbitrary definition. It still has considerable use, however, in the classification of soils.

The liquid limit water content is the water content at which a pat of soil, cut by a groove of standard dimensions, will come together for a distance of one-half inch under the impact of 25 blows in a standard liquid limit device. If the test is performed at a water content less than the liquid limit of the soil, it will take more than 25 blows of the device to close the groove cut in the soil; if the soil is at a water content greater than the liquid limit of that soil, fewer than 25 blows will be required to close the groove in the soil. By performing the test at several different water contents, you can develop a plotted graph of water content versus number of blows, and interpolate the water content at which it would take 25 blows to close the groove. This is the procedure that soils mechanics laboratories use to determine the liquid limit of soils.

Remember that only the portion of a sample smaller than the No. 40 sieve is used for this test.

If this test cannot be successfully performed at any water content, the soil is non-plastic.

A shortcut method of determining the liquid limit is also available. In this procedure, only one water content and blow count is used to perform a test. The liquid limit is then extrapolated by using the equation:

$$LL = (N/25)^{0.12} \times w(\%)_N$$

where

- LL = extrapolated value of liquid limit, in percent
- N = number of blows in one point test
- $w(\%)_N$ = water content at which N blows are required to close groove

Many useful correlations have been developed which use soils' liquid limit values as an index property for correlation.

The ASTM procedure for performing the liquid limit test is ASTM D4318.

Work the problem on the following page before continuing.
A laboratory has performed the liquid limit test procedure on a soil sample at four different water contents. The results are as follows:

<table>
<thead>
<tr>
<th>Number of Blows</th>
<th>Water Content, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>39.9</td>
</tr>
<tr>
<td>29</td>
<td>40.7</td>
</tr>
<tr>
<td>21</td>
<td>42.3</td>
</tr>
<tr>
<td>15</td>
<td>44.0</td>
</tr>
</tbody>
</table>

Using the graph below, plot up this data, and interpolate a value for the liquid limit of the soil.

If you have difficulty in completing this Activity, or you wish to check your solution, refer to the following page.
SOLUTION

The liquid limit is equal to 41.4% or 41%

This data is typical of well performed liquid limit procedures. The different water content trials should plot virtually on a straight line on semi-logarithmic graph paper.
PART A - TERMS AND DEFINITIONS

ACTIVITY 11 - PLASTIC LIMIT AND PLASTICITY INDEX

DEFINITIONS AND DISCUSSION

PLASTIC LIMIT - is the water content at which a soil changes from the plastic to the semi-solid state of consistency. This change is not an abrupt change. The plastic limit consequently is somewhat arbitrary by definition.

The plastic limit is the water content at which a soil being dried begins to crumble when rolled into a thread approximately 1/8-inch in diameter. To determine a soil's plastic limit, the portion of the sample finer than the No. 40 sieve is used. A sample is wetted to a water content within the plastic state of consistency - that is to a water content at which a 1/8-inch thread can be rolled without the sample cracking or crumbling. Then, the sample is gradually dried by adding small amounts of dry soil and thoroughly mixing, or by continuous kneading of the soil. Periodically, a 1/8-inch thread is rolled out as the sample is dried. After a certain amount of drying, you will no longer be able to roll out the 1/8-inch diameter thread without it crumbling, and you will not be able to reform a ball of soil. At that point, the plastic limit of the soil has been reached, and a water content test is performed on the sample. This water content is the plastic limit of the soil.

If a 1/8-inch thread cannot be rolled out at any water content tried, then the soil is described as non-plastic.

The ASTM procedure for performing the plastic limit test is ASTM D4318.

PLASTICITY INDEX - is the numerical difference between the liquid limit and plastic limit water contents of a soil:

\[PI = LL - PL \]

This value identifies the range of water content over which a soil has plastic behavior characteristics. Soils with PI values less than 8 are low in plasticity. Soils with PI values greater than 30-40 are high in plasticity.

Complete the problems on the following page before continuing.
PART A - TERMS AND DEFINITIONS

ACTIVITY 11 - Continued

PROBLEMS

Answer the following questions concerning plastic limit and plasticity index:

1. A laboratory plastic limit test was performed on the soil in Activity 10. It was determined that a 1/8-inch thread of soil could be rolled out and it just began to crumble when the water content of the soil was 19.8 percent. What is the value of the plasticity index of the soil?

2. The following diagrams represent consistency diagrams for three different soils, based on laboratory test results. Which of the three soils is the most plastic? Which is the least plastic?

Soil A

\[
\begin{align*}
\text{PL} & \quad \text{LL} \\
20\% & \quad 39\%
\end{align*}
\]

Soil B

\[
\begin{align*}
\text{PL} & \quad \text{LL} \\
26\% & \quad 34\%
\end{align*}
\]

(Not to Scale)

Soil C

\[
\begin{align*}
\text{PL} & \quad \text{LL} \\
30\% & \quad 69\%
\end{align*}
\]

3. Tests were performed on a soil and reported as: Liquid Limit = 23 percent, Plastic Limit = 22 percent. Is this possible? What does this say about the plasticity characteristics of the soil?

If you have difficulty in completing this Activity, or wish to check your solution, refer to the next page.
PART A - TERMS AND DEFINITIONS

ACTIVITY 11 - Continued

SOLUTION

1. Plasticity Index is equal to the liquid limit minus the plastic limit.
 \[PI = LL - PL \]
 \[PI = 41 - 20 \]
 \[= 21 \]

2. Soil C is the most plastic soil, with a PI value of 39. Soil B is the least plastic, with a PI of 8.

3. Yes, it is possible. It means that the soil has very low plasticity. It would not be possible for the plastic limit water content to be greater than the liquid limit water content, but they could be very close together, or even the same.
PART A - TERMS AND DEFINITIONS

ACTIVITY 12 - SHRINKAGE LIMIT

DEFINITION AND DISCUSSION

SHRINKAGE LIMIT - is the water content at which a soil changes from a semi-solid to the solid state of consistency. This change is defined by a laboratory test.

The shrinkage limit is the water content below which further drying of a soil mass does not produce further shrinkage in volume. With an initial water content above the shrinkage limit, drying of the soil results in shrinkage or volume change; at water contents below the shrinkage limit, drying of a soil mass does not result in additional shrinkage.

The test is performed on the portion of a soil sample finer than the No. 40 sieve.

To perform the shrinkage limit test, a sample is prepared at a water content slightly above the liquid limit of that soil. The sample is placed in a stainless steel dish with a precisely known volume. It is then oven-dried thoroughly. The soil pat in the dish will shrink appreciably, and a new volume is determined for the soil pat by immersing the soil pat in mercury. The initial water content of the soil pat can be determined by knowing the initial weight of the soil pat and the weight after oven drying. The shrinkage limit of the soil is then defined by the equation:

\[
SL = \frac{w(\%)}{-\left(\frac{V-V_0}{W_0}\right) \times 100}
\]

where

- \(w(\%)\) = initial water content of sample, in percent
- \(SL\) = shrinkage limit water content, in percent
- \(V\) = initial volume of wet soil pat
- \(V_0\) = volume of dry soil pat
- \(W_0\) = mass of oven-dried soil pat

The value of shrinkage limit is not used in the Unified Soil Classification System. Its primary use is in correlating shrink-swell behavior of plastic clay soils.

The shrinkage index of a soil is defined as the numerical difference between the soil's plastic limit and shrinkage limit:

\[
SI = PL - SL
\]

Complete the problem on the next page before continuing.
PART A - TERMS AND DEFINITIONS

ACTIVITY 12 - Continued

PROBLEM

A shrinkage limit test was performed on a soil sample. The results of the test are:

The initial water content of the soil pat was 57.2 percent.
The volume of the wet soil pat was 13.46 cubic centimeters.
The volume of the dry soil pat was 7.43 cubic centimeters.
The mass of the oven dry soil pat was 14.3 grams.

What was the value of the shrinkage limit of the soil?

If the soil had a liquid limit of 57 percent and a plasticity index of 30 percent, calculate the shrinkage index of the sample.

If you have difficulty in completing this activity, or wish to check your solution, refer to the following page.
SOLUTION

Shrinkage limit is calculated with the formula:

$$SL(\%) = w(\%) - \frac{(V - V_0)/W_0}{100}$$

$$= 57.2 - \frac{(13.46 - 7.43)/14.3}{100}$$

$$= 57.2 - 42.2$$

$$= 15.0\%$$

Shrinkage Index (SI) = PL-SL

$$PL = LL-PI = 57 - 30 = 27\%$$

$$SI = 27 - 15 = 12\%$$
PART A - TERMS AND DEFINITIONS

ACTIVITY 13 - COMPREHENSIVE PROBLEM

To evaluate your accomplishments concerning the objectives in Part A of this module, please complete the following exercise:

1. In your own words briefly define the following

Sieve -

No. 4 Sieve -

Grain Size Distribution Graph -

Percent Finer -

Plasticity -

Water Content -

Consistency -

2. List the four states of consistency of a soil and water mixture.

3. Define:

Liquid Limit -

Plastic Limit -

Plasticity Index -
PART A - TERMS AND DEFINITIONS

ACTIVITY 13 - Continued

4. Answer True or False.
 a. A soil cannot have a liquid limit greater than 100 percent. _______
 b. A soil can have a water content in excess of 200 percent. _______
 c. A certain soil had a liquid limit of 38 when the test was run on an air-dried sample. When oven-dried, the liquid limit obtained was 34. This soil is considered to be organic. _______

5. List the six sieves commonly used by the SCS for reporting gravel sizes.
 _______ _______ _______ _______ _______

6. List the seven sieves commonly used by the SCS for reporting sand sizes.
 _______ _______ _______ _______ _______ _______

7. Describe briefly how the percentage of sand-size and gravel-size particles in a given soil are obtained.

8. Describe how the Atterberg limits are obtained in the laboratory.

Did you have trouble on any question? Check your answers with those on the next page(s).

The completion of this Activity wraps up Part A of this module. You are now ready for Part B. Good luck.

38
ACTIVITY 13 - Continued

SOLUTION

1. **Sieve** - A piece of equipment with sized openings that will retain particles larger than a given size and let the smaller particles pass through the opening.

 No. 4 Sieve - A sieve that has four equal openings per lineal inch.

 Grain-size distribution graph - A curve developed from the results of gravel, sand and hydrometer analyses that show the percentages of a soil sample smaller than given particle sizes.

 Percent Finer - The amount of the soil particles that will pass a given sieve size computed on a dry weight basis as a percentage of the total sample.

 Plasticity - A property of a soil which allows it to be deformed beyond the point of recovery without cracking or appreciable volume change.

 Water Content - The amount of water in a soil expressed as a percent and based on the dry weight of the total sample.

 Consistency - The relative ease with which a soil can be deformed.

2. Four states of consistency are:

 - Liquid
 - Plastic
 - Semi-solid
 - Solid

3. **Liquid Limit** - The water content at which a soil changes from the liquid to the plastic state of consistency.

 Plastic Limit - The water content at which a soil changes from the plastic state to the semi-solid state of consistency.

 Plasticity Index - The numerical difference between the LL and the PL. It is the range of water contents over which a soil has plastic behavior.
PART A - TERMS AND DEFINITIONS

ACTIVITY 13 - Continued

4. a. False. - A soil can have a liquid limit of any value greater than 16%.

 b. True. - A soil can have a water content of any value. Again there is no upper limit.

 c. False. - The reduction must be at least 25%.

5. 3 inch, 2 inch, 1-1/2 inch, 3/4 inch, 1/2 inch, 3/8 inch, No. 4

6. No. 4, No. 10, No. 20, No. 40, No. 60, No. 140.

7. Review Activities 6 and 7, Part A, of your Study Guide.

8. Review Activities 10 and 11, Part A, of your Study Guide.
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Objectives 45</td>
</tr>
<tr>
<td>2</td>
<td>Particle Size Comparisons 47</td>
</tr>
<tr>
<td>3</td>
<td>Flow Chart 49</td>
</tr>
<tr>
<td>4</td>
<td>Organic Soil 53</td>
</tr>
<tr>
<td>5</td>
<td>Plasticity Chart 54</td>
</tr>
<tr>
<td>6</td>
<td>Group Names for Fine-grained Soils 57</td>
</tr>
<tr>
<td>7</td>
<td>Classification Problems 58</td>
</tr>
<tr>
<td>8</td>
<td>Problems 61</td>
</tr>
<tr>
<td>9</td>
<td>Determination of D_{10}, D_{30}, and D_{60} Sizes and Calculation of Cu 63</td>
</tr>
<tr>
<td>10</td>
<td>Problem on Calculation of Cc 67</td>
</tr>
<tr>
<td>11</td>
<td>Criteria for Clean Well-graded and Poorly Graded Sands and Gravels and Illustrative Problems 69</td>
</tr>
<tr>
<td>12</td>
<td>Example Classification of Clean Coarse-grained Soil 73</td>
</tr>
<tr>
<td>13</td>
<td>Problem on Classification of Clean Coarse-grained Soil 75</td>
</tr>
<tr>
<td>14</td>
<td>Group Name for Clean Coarse-grained Soils 79</td>
</tr>
<tr>
<td>15</td>
<td>Group Names for Dirty Coarse-grained Soils 81</td>
</tr>
<tr>
<td>16</td>
<td>Problems 83</td>
</tr>
<tr>
<td>17</td>
<td>Example of Dual Coarse-grained Soil 85</td>
</tr>
<tr>
<td>18</td>
<td>Problem 87</td>
</tr>
<tr>
<td>19</td>
<td>Group Names for Dual Coarse-grained Soils 93</td>
</tr>
<tr>
<td>20</td>
<td>Review questions 95</td>
</tr>
<tr>
<td>21</td>
<td>Problems 97</td>
</tr>
</tbody>
</table>
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 1 - OBJECTIVES

At the completion of Part B, you will be able to:

1. Identify and describe the use of the flow chart and plasticity chart in classifying soils by the Unified Soil Classification System using laboratory data.

2. Correctly classify all 25 soil classes in the Unified Classification System using the flow chart, plasticity chart, and laboratory data for the soils.

START THE PLAYER WHEN YOU HAVE FINISHED
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 2 - PARTICLE SIZE COMPARISONS

The particle size boundaries for the Unified Soil Classification System (USCS) are summarized in the table on the following page. Also shown are particle size boundaries for other classification systems. Notice the differences in particle size definition between the Unified System, and the USDA Textural System, and the American Association of State Highway and Transportation Officials (AASHTO) System.
* Colloids included in clay fraction in test reports.

** The LL and PI of "Silt" plot below the "A"-line on the Plasticity Chart and the LL and PI of "Clay" plot above the "A"-line, or in the hatched zone.
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 3 - FLOW CHART

The flow chart is the basic tool used to classify soils by USCS using laboratory data. You will need to refer to this chart often during this module. You may want to paper clip this page for ease of location. The flow chart is the fold out sheet on the next page.

The flow chart is used by starting at the top of the chart and branching downwards in the chart based on data for the soil you are classifying and the decision blocks shown on the chart. If you follow the chart correctly and evaluate the data correctly, you will arrive at the correct USCS symbol for the soil that you are classifying.
ABBREVIATIONS

The abbreviation for a soil group in the Unified Soil Classification System consists of two or more letters. Each letter has a particular meaning, which is helpful in the shorthand description of the soil. Each of the letters used in the system and its meaning are summarized below:

G - Gravel - denotes a soil will less than 50 percent fines containing more gravel than sand

S - Sand - denotes a soil with less than 50 percent fines containing more sand than gravel

P - Poorly graded - denotes a sand or gravel with 12% or less fines content that is poorly graded

W - Well-graded - denotes a sand or gravel with 12% or less fines content that is well-graded

H - High liquid limit - modifier used for fine-grained soils to denote liquid limit values of 50 or higher

L - Low liquid limit - modifier used for fine-grained soils to denote liquid limit values of less than 50

C - Plastic Fines - modifier used to describe plasticity characteristics of fine-grained soils or coarse-grained soils with significant content of fines. Denotes fines with plastic characteristics

M - Non-plastic to Slightly Plastic - modifier used to describe plasticity characteristics of fine-grained soils or coarse-grained soils with significant content of fines. Denotes fines with non-plastic to slightly plastic characteristics

O - Organic - modifier used to describe fine-grained soils with organic characteristics

Pt - Peat - symbol for peat in the Unified Soil Classification System.

By combining these symbols, groups names are derived. For example, a GP soil is a poorly graded gravel. A CH soil is a plastic soil with a high liquid limit. A GC soil is a gravel with plastic fines. There are 30 classifications in the Unified Systems with each classification represented by an abbreviation as shown on the flow chart at the right. Other Activities in this Module give more complete descriptions of terminology.
ACTIVITY 4 - ORGANIC SOIL

When organic soils are suspected, a liquid limit test is performed on two samples of the soil. The soil for one test is prepared by air-drying the sample before processing through the No. 40 sieve and performing the test. The other sample is prepared by oven-drying the soil at a temperature of 110 degrees Centigrade + or – 5 degrees, then processing the soil through the No. 40 sieve and performing the liquid limit test.

If the ratio of the liquid limit performed on the oven-dried sample to the liquid limit value of the air-dried sample is less than 0.75, then the soil is an organic silt (Ol) or an organic clay (OH). Ol soils have air-dried liquid limit values less than 50 percent and OH soils have air-dried liquid limit values equal to or greater than 50 percent.

Classify each of the following soils.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Percent finer than No. 200 sieve</th>
<th>LL of oven-dry sample</th>
<th>LL of air-dry sample</th>
<th>Ratio of oven-dry to air-dry LL values</th>
<th>Unified class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>45</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>35</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>58</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>62</td>
<td>42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you have difficulty completing this activity, or you wish to check your work, please refer to the following page for the solution.
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 4

The solution to Activity 4 follows:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Percent finer than No. 200 sieve</th>
<th>Ratio of oven-dry to air-dry liquid limit values</th>
<th>Unified Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>0.67</td>
<td>OL</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>0.69</td>
<td>OL</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>0.69</td>
<td>OH</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>0.68</td>
<td>OH</td>
</tr>
</tbody>
</table>

START THE PLAYER WHEN YOU HAVE FINISHED

ACTIVITY 5 - PLASTICITY CHART

The plasticity chart is used for classifying fine-grained soil and for classifying the plasticity characteristics of dirty sand and gravel and dual-classified sand and gravel. The plasticity chart is shown on the next page. You will need to refer to this often in the course, and may want to paper clip the page for ease of location.

Note that the maximum liquid limit shown on this particular chart is 100. However, this is just to keep the chart to a convenient size. If the liquid limits exceed 100, you may extend the "A" line using the same slope.

The plasticity chart has several areas bounded by the lines shown. The vertical line, at a liquid limit of 50, separates soils with "high" liquid limits from those with "low" liquid limits. Soils with liquid limit values of 50 or greater are given the symbol H, while soils with liquid limit values less than 50 are given the symbol L.

The line labeled "A" line separates soils with significant plasticity from those with low plasticity. Soils plotting on or above the "A" line are referred to as plastic and are given the symbol C, while those soils plotting below the "A" line are referred to as slightly plastic or non-plastic and are given the symbol M.

The line labeled "U" line is given to indicate that properly performed Atterberg limit tests will not plot above this line. Note that the "U" line is shown vertically at a liquid limit value of 16. This indicates that it is unlikely that a test could be properly performed on a soil with a liquid limit value less than 16. Such a soil should be labeled non-plastic rather than reporting test values less than 16 for the liquid limit.

Note that if laboratory test results indicate that a soil is non-plastic, this is equivalent to the soil having a PI equal to 0.

START THE PLAYER WHEN YOU HAVE FINISHED

54

Revised Feb 1987
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 6 - GROUP NAMES FOR FINE-GRAINED SOILS

Each fine-grained classification in the USCS has a group name as well as a symbol. These group names clarify the amount of sand or gravel or both, that may be a part of the soil. The combinations are:

Primary Descriptive Terms

CL - LEAN CLAY	OL & OH - ORGANIC CLAY - IF PI IS GREATER THAN
CL-ML - SILTY CLAY	OR EQUAL TO 4 AND ATTERBERG LIMITS
ML - SILT	PLOT ON OR ABOVE A-LINE ON PLASTICITY CHART
CH - FAT CLAY	OL & OH - ORGANIC SILT - PLOTS BELOW A-LINE ON
MH - ELASTIC SILT	PLASTICITY CHART

Modifiers

86% or more finer than the No. 200 sieveno additional modifier terms
71-85% finer than No. 200 sieve, %S<%G() WITH SAND
71-85% finer than No. 200 sieve, %S>%G() WITH GRAVEL
50-70% finer than No. 200 sieve, %S>%G, %G>15%SANDY ()
50-70% finer than No. 200 sieve, %S>%G, %G<15%SANDY () WITH GRAVEL
50-70% finer than No. 200 sieve, %S<%G, %S<15%GRAVELLY ()
50-70% finer than No. 200 sieve, %S<%G, %S>15%GRAVELLY () WITH SAND

Examples

Example 1. CL soil with 74% finer than No. 200 sieve, 14% S and 12% G

LEAN CLAY WITH SAND

Example 2. MH soil with 53% finer than No. 200 sieve, 40% G and 7% S

GRAVELLY ELASTIC SILT

Example 3. CH soil with 70% finer than No. 200 sieve, 22% G, 8% S

GRAVELLY FAT CLAY

Example 4. CL-ML soil with 52% finer than No. 200 sieve, 30% S, 18% G

SANDY SILTY CLAY WITH GRAVEL

Example 5. OH soil with 65% finer than No. 200 sieve, 20% S, 15% G, LL and PI plot below A-Line.

SANDY ORGANIC SILT WITH GRAVEL

Example 6. CL with 88% finer than No. 200 sieve, 10% S, 2% G, LL and PI plot above A-Line.

LEAN CLAY

START THE PLAYER WHEN YOU HAVE FINISHED

57
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 7 - CLASSIFICATION PROBLEMS

Classify the following soil samples using the data given. Assume the soils are not organic. Include the USCS symbol and group name. Proceed as follows:

1. Go to plasticity chart with LL & PI to determine major USCS symbol.
2. Use gradation data to determine group name by using Activity 6.

<table>
<thead>
<tr>
<th>Sample</th>
<th>No.200</th>
<th>No.4</th>
<th>3 inch</th>
<th>LL</th>
<th>PI</th>
<th>USCS symbol</th>
<th>Group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>100</td>
<td>100</td>
<td>58</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>79</td>
<td>95</td>
<td>100</td>
<td>24</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>82</td>
<td>100</td>
<td>100</td>
<td>41</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>82</td>
<td>98</td>
<td>70</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td>100</td>
<td>100</td>
<td>120</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>73</td>
<td>100</td>
<td>---</td>
<td>NP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you have difficulty completing this activity, or you wish to check your work, the solution to this activity is on the following page.
Determine from data given for each of the following samples: (1) percent sand or gravel, (2) fine-grained or coarse-grained soil, (3) if coarse-grained, clean, dirty, or dual.

<table>
<thead>
<tr>
<th>Number</th>
<th>Percent Finer</th>
<th>Percent Sand</th>
<th>Percent Gravel</th>
<th>Fine-grained or coarse-grained (if coarse-grained)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 No.200, 78 No.4, 100 3 inch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>98</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>27</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>82</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>42</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>74</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

If you have difficulty completing this activity, or you wish to check your responses, refer to the next page for the solution.
Activity 8 - Solution

<table>
<thead>
<tr>
<th>Number</th>
<th>Percent Finer</th>
<th>Percent</th>
<th>Percent</th>
<th>Fine-grained or</th>
<th>Clean, dirty or dual (if coarse-grained)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.200</td>
<td>No.4</td>
<td>3 inch</td>
<td>Sand</td>
<td>Gravel</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>78</td>
<td>100</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>98</td>
<td>99</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>27</td>
<td>98</td>
<td>23</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>82</td>
<td>100</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>42</td>
<td>98</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>74</td>
<td>100</td>
<td>60</td>
<td>26</td>
</tr>
</tbody>
</table>

If you have difficulty completing this activity, you should review the flow chart, Activity 3, of your Study Guide before continuing.

* Not applicable for fine-grained soil.

START THE PLAYER WHEN YOU HAVE FINISHED
ACTIVITY 7 - NOTES
ACTIVITY 7 - SOLUTION

<table>
<thead>
<tr>
<th>Sample</th>
<th>Percent Passing</th>
<th>USCS Symbol</th>
<th>Group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58 42 0 58 32</td>
<td>CH</td>
<td>SANDY FAT CLAY</td>
</tr>
<tr>
<td>2</td>
<td>79 16 5 24 7</td>
<td>CL-ML</td>
<td>SILTY CLAY WITH SAND</td>
</tr>
<tr>
<td>3</td>
<td>82 18 0 41 31</td>
<td>Plots above U-Line. Re-check Atterberg results</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>69 13 16 70 35</td>
<td>MH</td>
<td>GRAVELLY ELASTIC SILT</td>
</tr>
<tr>
<td>5</td>
<td>89 11 0 120 77</td>
<td>CH</td>
<td>FAT CLAY</td>
</tr>
<tr>
<td>6</td>
<td>63 10 27 --- NP</td>
<td>ML</td>
<td>GRAVELLY SILT</td>
</tr>
</tbody>
</table>

If you had difficulty completing this activity you should review the use of the plasticity chart, Activity 5, and the use of descriptive terms for fine-grained soil, Activity 6, before continuing.
ACTIVITY 9 - DETERMINATION OF D_{10}, D_{30}, and D_{60} SIZES AND CALCULATION OF Cu

Discussion of D_{10}, D_{30}, and D_{60} Sizes

The D_{10} size of a soil is the particle size, expressed in millimeters, of which 10 percent of the soil is finer than that size particle. The D_{10} size is determined from a plotted grain-size distribution curve by reading horizontally from the 10 percent finer coordinate to the curve. Then move downward from this point and read the grain size in millimeters on the scale at the bottom of the graph.

The D_{30} size of a soil is the particle size, expressed in millimeters, of which 30 percent of the soil is finer than that size particle.

The D_{60} size of a soil is the particle size, expressed in millimeters, of which 60 percent of the soil is finer than that size particle.

The D_{30} and D_{60} sizes are determined in the same manner as the D_{10} size. These procedures are also illustrated graphically in this activity.

Problem on Calculation of Cu

Using the following laboratory sieve analysis, plot a grain-size distribution curve for the sample. Determine the D_{10} and D_{60} sizes. Then calculate the coefficient of uniformity, Cu, using the equation:

\[Cu = \frac{D_{60}}{D_{10}} \]
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 9 - Continued

Use the blank SCS-ENG-353 form included in this activity as a worksheet.

If you have difficulty in completing this problem, or wish to check your solution, refer to the solution sheet for Activity 10.

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>100</td>
</tr>
<tr>
<td>2 inch</td>
<td>97</td>
</tr>
<tr>
<td>1½ inch</td>
<td>93</td>
</tr>
<tr>
<td>1 inch</td>
<td>86</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>82</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>74</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>68</td>
</tr>
<tr>
<td>No. 4</td>
<td>50</td>
</tr>
<tr>
<td>No. 10</td>
<td>36</td>
</tr>
<tr>
<td>No. 20</td>
<td>26</td>
</tr>
<tr>
<td>No. 40</td>
<td>21</td>
</tr>
<tr>
<td>No. 60</td>
<td>16</td>
</tr>
<tr>
<td>No. 140</td>
<td>8</td>
</tr>
<tr>
<td>No. 200</td>
<td>2</td>
</tr>
</tbody>
</table>

START THE PLAYER WHEN YOU HAVE FINISHED

64
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 10 - PROBLEM

Using the same curve you developed in Activity 9, calculate the coefficient of curvature, using the equation:

\[
Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}
\]

If you have difficulty in completing this activity, or wish to check your solution, please refer to the solution shown on the next page.
ACTIVITY 11 - CRITERIA FOR CLEAN WELL- GRADED SAND AND GRAVEL AND ILLUSTRATIVE PROBLEMS

Criteria for clean, well-graded gravel

Well-graded gravels must meet all three of the following criteria:
1. Have less than 5 percent finer than the No. 200 sieve.
2. Have a Cu value greater than 4, and
3. Have a Cc value between 1 and 3.

If a gravel fails to meet any of these criteria, it is poorly graded.

Criteria for clean, well-graded sand

Well-graded sands must meet all three of the following criteria:
1. Have less than 5 percent finer than the No. 200 sieve.
2. Have a Cu value greater than 6, and
3. Have a Cc value between 1 and 3.

If a sand fails to meet any of these criteria, it is poorly graded.
ACTIVITY 11 - PROBLEMS

Data are given below for 10 example soils. Assume that a gradation curve has been drawn for each soil, and the coefficient of uniformity and coefficient of curvature have been calculated. Use the given information and your flow chart, Activity 3, to classify each soil by the USCS.

If you have difficulty in completing this activity or wish to check your solution, refer to the next page, Activity 11 Solution.

<table>
<thead>
<tr>
<th>Number</th>
<th>Percent Finer</th>
<th>Percent</th>
<th>USCS Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 200</td>
<td>No. 4</td>
<td>3 inch</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>68</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>33</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>72</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>29</td>
<td>98</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
ACTIVITY 11 - NOTES
Activity 11 - Solution

<table>
<thead>
<tr>
<th>Number</th>
<th>No. 200</th>
<th>No. 4</th>
<th>3 inch</th>
<th>Percent Finer</th>
<th>Percent</th>
<th>Cu</th>
<th>Cc</th>
<th>USCS Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>68</td>
<td>99</td>
<td></td>
<td>64</td>
<td>31</td>
<td>16</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>100</td>
<td>100</td>
<td></td>
<td>97</td>
<td>0</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>45</td>
<td>100</td>
<td></td>
<td>43</td>
<td>55</td>
<td>12</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>65</td>
<td>100</td>
<td></td>
<td>62</td>
<td>35</td>
<td>55</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>33</td>
<td>97</td>
<td></td>
<td>32</td>
<td>64</td>
<td>4.5</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>72</td>
<td>100</td>
<td></td>
<td>68</td>
<td>28</td>
<td>7.6</td>
<td>2.8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>98</td>
<td>100</td>
<td></td>
<td>95</td>
<td>2</td>
<td>5.4</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>45</td>
<td>100</td>
<td></td>
<td>43</td>
<td>55</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>29</td>
<td>98</td>
<td></td>
<td>28</td>
<td>69</td>
<td>5.2</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>100</td>
<td>100</td>
<td></td>
<td>97</td>
<td>0</td>
<td>7.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

If you had difficulty in completing this section or your solutions are not the same as those shown, you should carefully review the flow chart, Activity 3, before continuing.
GRAIN SIZE DISTRIBUTION

<table>
<thead>
<tr>
<th>Sieve No.</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3"</td>
<td>100</td>
</tr>
<tr>
<td>2"</td>
<td>77</td>
</tr>
<tr>
<td>3/4"</td>
<td>50</td>
</tr>
<tr>
<td>No. 4</td>
<td>26</td>
</tr>
<tr>
<td>No. 10</td>
<td>16</td>
</tr>
<tr>
<td>No. 40</td>
<td>7</td>
</tr>
<tr>
<td>No. 100</td>
<td>2</td>
</tr>
</tbody>
</table>

(1) 98% > No. 200

(2) 74% > No. 4

(3) \(C_{v} = \frac{D_{60}}{D_{10}} = \frac{30.0}{0.75} = 40.0 \)

(4) \(C_{c} = \frac{(D_{30})^2}{D_{10} \times D_{60}} = \frac{(6.0)^2}{0.75 \times 30} = \frac{36.0}{22.5} = 1.6 \) (Between 1 and 3)

Therefore, Class is GW
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 13 - PROBLEM

Sieve analysis data are given on the following page. Classify the soil by the USCS using what you have learned at this point.

If you have difficulty in completing this activity, or you wish to check your solution, refer to the page following the problem for the solution.
PROBLEM 1 GRADATION (SOLUTION)

<table>
<thead>
<tr>
<th>FIELD SAMPLE NO.</th>
<th>DEPTH</th>
<th>GEOLGIC ORIGIN</th>
<th>TYPE OF SAMPLE</th>
<th>TESTED AT</th>
<th>APPROVED BY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYMBOL GP DESCRIPTION Poorly Graded Gravel

(1) $S_g = \frac{D_{60}}{D_{10}} = 10/1.1 = 9.1$

(2) $Cu > 4$

(3) $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}} = \frac{(2.7)^2}{1.1 \times 10} = 2.3$

(4) Cc is not 1-3

Therefore class is GP

SOLUBLE SHRINKAGE LIMIT %

SPECIFIC GRAVITY (G_s)

ATTETBERG LIMITS

MATERIAL MOISTURE

OVER DAY PI LL PL

UNDISTURBED CONDITION

DRY UNIT WEIGHT w% PCT

REMARKS

78
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 14 - GROUP NAMES FOR CLEAN COARSE-GRAINED SOILS

The four possible clean coarse-grained soil classifications in the USCS are shown below. In addition to the USCS symbols, you should be familiar with the group names used to describe the classifications. The combinations of descriptive terms and modifiers are:

<table>
<thead>
<tr>
<th>Primary Descriptive Term</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW - WELL- GRADED GRAVEL</td>
<td>SW - WELL- GRADED SAND</td>
</tr>
<tr>
<td>GP - POORLY GRADED GRAVEL</td>
<td>SP - POORLY GRADED SAND</td>
</tr>
</tbody>
</table>

Less than 15 percent of the other coarse-grained constituent - NO MODIFIER

15 percent or more of the other coarse-grained constituent - WITH SAND or WITH GRAVEL, as appropriate

Examples

Example 1. GW soil with 34 percent sand - WELL- GRADED GRAVEL WITH SAND

Example 2. SP soil with 14 percent gravel - POORLY GRADED SAND

START THE PLAYER WHEN YOU HAVE FINISHED

79
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 15 - GROUP NAMES FOR DIRTY COARSE-GRAINED SOILS

The six classifications of dirty coarse grained soils in the USCS are summarized below. In addition to giving the USCS symbol, you should be familiar with the group names. The various combinations are:

Primary Descriptive Term

<table>
<thead>
<tr>
<th>GM</th>
<th>SILTY GRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>CLAYEY GRAVEL</td>
</tr>
<tr>
<td>GC-GM</td>
<td>SILTY CLAYEY GRAVEL</td>
</tr>
</tbody>
</table>

Modifiers

Less than 15 percent of the other coarse-grained constituent - NO MODIFIER

15 percent or more of the other coarse-grained constituent - WITH SAND or WITH GRAVEL, as appropriate

Examples

Example 1. GC soil with 40 percent sand - CLAYEY GRAVEL WITH SAND
Example 2. SM soil with 10 percent gravel - SILTY SAND
Example 3. GC-GM soil with 16 percent sand - SILTY, CLAYEY GRAVEL WITH SAND
Example 4. SC soil with 15 percent gravel - CLAYEY SAND WITH GRAVEL

START THE PLAYER WHEN YOU HAVE FINISHED

Revised Oct 1985
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 16 - PROBLEM

Using data below, classify each of the soils by the USCS. Give the symbol and the group name for each soil.

<table>
<thead>
<tr>
<th>Number</th>
<th>No. 200</th>
<th>No. 4</th>
<th>3 inch</th>
<th>LL</th>
<th>PI</th>
<th>Symbol and group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>42</td>
<td>100</td>
<td>32</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>100</td>
<td>100</td>
<td>--</td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>52</td>
<td>100</td>
<td>23</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>82</td>
<td>100</td>
<td>40</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>47</td>
<td>98</td>
<td>20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>89</td>
<td>100</td>
<td>28</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>67</td>
<td>100</td>
<td>42</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>40</td>
<td>97</td>
<td>40</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

If you have difficulty in completing this activity, or you wish to check your solution, refer to the following page for the solution to this activity. If you had difficulty completing this section, you should carefully review the flow chart and plasticity chart before continuing.
ACTIVITY 16 - SOLUTION

<table>
<thead>
<tr>
<th>Number</th>
<th>Percent Passing</th>
<th>LL</th>
<th>PI</th>
<th>Symbol and group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 42 100</td>
<td>32</td>
<td>14</td>
<td>GC - CLAYEY GRAVEL WITH SAND</td>
</tr>
<tr>
<td>2</td>
<td>39 100 100</td>
<td>--</td>
<td>NP</td>
<td>SM - SILTY SAND</td>
</tr>
<tr>
<td>3</td>
<td>30 52 100</td>
<td>23</td>
<td>6</td>
<td>GC-GM - SILTY, CLAYEY GRAVEL WITH SAND</td>
</tr>
<tr>
<td>4</td>
<td>18 82 100</td>
<td>40</td>
<td>6</td>
<td>SM - SILTY SAND WITH GRAVEL</td>
</tr>
<tr>
<td>5</td>
<td>23 47 98</td>
<td>20</td>
<td>5</td>
<td>GC-GM - SILTY, CLAYEY GRAVEL WITH SAND</td>
</tr>
<tr>
<td>6</td>
<td>13 89 100</td>
<td>28</td>
<td>8</td>
<td>SC - CLAYEY SAND</td>
</tr>
<tr>
<td>7</td>
<td>40 67 100</td>
<td>42</td>
<td>32</td>
<td>Plots above "U-Line" - Re-run Atterberg Limit tests.</td>
</tr>
<tr>
<td>8</td>
<td>25 40 97</td>
<td>40</td>
<td>20</td>
<td>GC - CLAYEY GRAVEL WITH SAND</td>
</tr>
</tbody>
</table>

START THE PLAYER WHEN YOU HAVE FINISHED

84

Revised Oct 1985
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 17 - EXAMPLE OF DUAL COARSE-GRAINED SOIL

The following example illustrates the flow chart process for classifying a dual coarse-grained soil. Use your flow chart and follow the steps in the example.

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>88</td>
</tr>
<tr>
<td>No. 10</td>
<td>60</td>
</tr>
<tr>
<td>No. 20</td>
<td>33</td>
</tr>
<tr>
<td>No. 40</td>
<td>20</td>
</tr>
<tr>
<td>No. 60</td>
<td>14</td>
</tr>
<tr>
<td>No. 140</td>
<td>7</td>
</tr>
<tr>
<td>No. 200</td>
<td>6</td>
</tr>
</tbody>
</table>

Atterberg Limits = Non-Plastic

Step 1. Sample is coarse-grained because less than 50% is finer than the No. 200 sieve. (6%)

Step 2. Sample is dual group of coarse-grained soils because between 5% and 12% is finer than No. 200 sieve. (6%)

Step 3. Sample is a dual group sand, because sample has 12% gravel and 82% sand. (%G = 3"-No. 4) (%S=No. 4-No. 200) (%G=100-88=12, %S=88-6=82)

Step 4. Plot gradation curve (see next page) and determine D_{10}, D_{30}, and D_{60}. ($D_{10} = 0.15$ mm, $D_{30} = 0.7$ mm, $D_{60} = 2.0$ mm)

Step 5. Calculate Cu, coefficient of uniformity and Cc, coefficient of curvature. ($Cu = D_{60}/D_{10} = 2.0/0.15 = 13.3$)

$$Cc = (D_{30}/D_{10}xD_{60}) = (0.7)^2/(0.15x2.0) = 1.6$$

Step 6. Determine that both coefficients meet requirements for sand, Cu is greater than 6, and Cc is between 1 and 3.

Step 7. Plot Atterberg Limits on plasticity chart and determine that plot is below "A-Line". Class is SW-SM.

START THE PLAYER WHEN YOU HAVE FINISHED
Soil Classification

Problem 2

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Depth Tested</th>
<th>Field Sample No.</th>
<th>Geo. Origin</th>
</tr>
</thead>
</table>

Materials

- **U.S. Department of Agriculture**
- **Soil Conservation Service**

Soil Classification Report

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>

Grain Size Distribution

- **D_0.0**
- **D_1.6**
- **D_13.3**

Percent Passing

- **Sieve No.**
 - 1/2":
 - No. 4: 100
 - No. 10: 108
 - No. 20: 60
 - No. 40: 33
 - No. 60: 14
 - No. 140: 7
 - No. 200: 6

Atterberg Limits

- **SOLUBLE SHrinkage Limit**
 - **C_s** = \(\frac{(D_{30})^2}{D_{40} \times D_{60}} \) = 1.6

SOLVENT FREE GRAVITY (G_w)

- **Cu = D_{15} / 0.15 = 13.3**

Remarks

- **C_s** = \(\frac{(D_{30})^2}{D_{40} \times D_{60}} \) = 1.6
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 18 - Problem

Given the following laboratory data, classify the soil with the proper USCS symbol. Use the blank grain-size distribution form on the following page to complete the problem.

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent finer</th>
<th>Atterberg Limits are LL=24 and PI=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inch</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2 inch</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>1 inch</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>1/2 inch</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>3/8 inch</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>No. 4</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>No. 10</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>No. 20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>No. 40</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>No. 60</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>No. 140</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>No. 200</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.05 millimeters</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

If you have difficulty in completing this activity, or wish to check your solution, see the completed solution on the second page following. If you had difficulty in completing this activity, you should carefully review the flow chart before continuing.
Field Sample No.

<table>
<thead>
<tr>
<th>Field Sample No</th>
<th>Depth</th>
<th>Geologic Origin</th>
<th>Type of Sample</th>
<th>Tested At</th>
<th>Approved By</th>
<th>Date</th>
</tr>
</thead>
</table>

Symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>

Grain Size Distribution

<table>
<thead>
<tr>
<th>Grain Size</th>
<th>Percentage</th>
</tr>
</thead>
</table>

Un disturbed Condition

<table>
<thead>
<tr>
<th>Moisture</th>
<th>%</th>
</tr>
</thead>
</table>

Soluble Shrinkage Limit

<table>
<thead>
<tr>
<th>Soluble Shrinkage Limit</th>
<th>%</th>
</tr>
</thead>
</table>

Atterberg Limits

<table>
<thead>
<tr>
<th>Atterberg Limits</th>
<th>%</th>
</tr>
</thead>
</table>

Specific Gravity (G_s)

<table>
<thead>
<tr>
<th>Specific Gravity (G_s)</th>
<th>%</th>
</tr>
</thead>
</table>

Remarks

<table>
<thead>
<tr>
<th>Remarks</th>
<th>%</th>
</tr>
</thead>
</table>
ACTIVITY 18 - SOLUTION

Step 1. Determine that the sample is coarse-grained because less than 50 percent finer than the No. 200 sieve (10 percent is finer).

Step 2. Determine that the soil is a dual group coarse-grained sample because between 5 percent and 12 percent is finer than the No. 200 sieve.

Step 3. Determine which constituent predominates, by calculating the percent of sand and the percent of gravel. The percent S is equal to the percent finer than the No. 4 sieve minus the percent finer than the No. 200 sieve, or 46 percent - 10 percent = 36 percent. The percent G is equal to the percent finer than the 3 inch sieve minus the percent finer than the No. 4 sieve, or 100 percent - 46 percent = 54 percent. Gravel predominates.

Step 4. Plot the grain-size distribution curve and determine values for D_{10}, D_{30}, and D_{60}. ($D_{10} = 0.074 \text{ mm}$, $D_{30} = 0.82 \text{ mm}$, $D_{60} = 14 \text{ mm}$.)

Step 5. Calculate $C_u = D_{60}/D_{10} = 14.0/0.074 = 189$

Calculate $C_c = (D_{30})^2/(D_{10} \times D_{60}) = (0.82)^2/(0.074 \times 14.0) = 0.65$

Step 6. Determine that coefficient of curvature is not in the range prescribed (between 1 and 3), so the sample is poorly graded.

Step 7. To complete the classification, plot the Atterberg Limits on the Plasticity chart, and determine that the sample plots in the hatched zone of the chart, and therefore is classified as GP-GC. The correct Group Name is poorly graded gravel with silty clay and sand.
ACTIVITY 19 - GROUP NAMES FOR DUAL COURSE-GRAINED SOILS

The eight dual coarse-grained classifications in the USCS are below. In addition to the USCS symbol for each classification, you should be familiar with the group name for each.

Primary descriptive term

GW-GM - WELL-GRADED GRAVEL WITH SILT
GW-GC - WELL-GRADED GRAVEL WITH CLAY (OR SILTY CLAY)
GP-GM - POORLY GRADED GRAVEL WITH SILT
GP-GC - POORLY GRADED GRAVEL WITH CLAY (OR SILTY CLAY)
SW-SM - WELL-GRADED SAND WITH SILT
SW-SC - WELL-GRADED SAND WITH CLAY (OR SILTY CLAY)
SP-SM - POORLY GRADED SAND WITH SILT
SP-SC - POORLY GRADED SAND WITH CLAY (OR SILTY CLAY)

Modifiers

Less than 15 percent of the other coarse grained constituent - NO MODIFIER
15 percent or more of the other coarse grained constituent - and SAND or GRAVEL, as appropriate

Examples

Example 1. GP-GM soil with 22 percent sand - POORLY GRADED GRAVEL WITH SILT AND SAND
Example 2. SP-SM soil with 8 percent gravel - POORLY GRADED SAND WITH SILT
Example 3. SP-SM soil with 28 percent gravel - POORLY GRADED SAND WITH SILT AND GRAVEL
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 20 - REVIEW QUESTIONS

1. Dual coarse-grained soils have between ___ and ___ percent finer than the No.200 sieve.

2. (T/F) An important influence on the classification of a dirty coarse-grained soil is whether it is well-graded or poorly graded.

3. (T/F) The "U-Line" determines whether a soil's fines are plastic or non-plastic.

4. Elastic silt is the group name corresponding to the USCS symbol ___.

5. (T/F) A number 20 sieve has openings that are exactly 1/20 of an inch.

6. The sieve separating sands and gravel-sized particles in the USCS is the ____ sieve.

7. (T/F) If a clean coarse-grained soil meets either of the gradation requirements for the two coefficients, it is well graded.

8. (T/F) A CH soil has a liquid limit value equal to or greater than 50?

9. The hatched zone on the Plasticity chart includes PI values in the range of ___ to ___.

If you have difficulty in completing this activity, or wish to check your solution, refer to the next page for the solutions.
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 20 - Review Questions - Solution

1. 5 and 12

2. False. The classification depends on the plasticity of the fines in the sample and whether sand or gravel predominates.

3. False. The "U-Line" is used to determine whether Atterberg test results are reasonable. Data plotting above the "U-Line" is questionable.

4. MH

5. False. A number 20 sieve has 20 openings per inch, but because of the construction of sieves and the space occupied by the sieve wires, the actual opening in the sieve is only 0.033 of an inch.

6. No. 4

7. False. To be well-graded, a clean, coarse-grained soil must meet both coefficient requirements. If it fails to meet either one, it is poorly graded.

8. True

9. 4 to 7, inclusive
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 21 - PROBLEMS

Classify each of the soils on the next page using the laboratory data given for each soil, your flow chart, plasticity chart, and the plotted grain-size distribution curves if applicable. Blank grain-size distribution forms are provided.

Assume that all of the fine-grained soils are not organic.

The 23 soils include one each of the USCS except for the organic classifications. You should also attempt to include the group name for each soil in addition to the USCS symbol.

The data are given on the next sheet. Use the second sheet for computations and answers.

If you have difficulty in completing this part of the Activity, or you wish to check your solution, the answers are included on a following page.
ACTIVITY 21
PROBLEM

MECHANICAL ANALYSIS

GRAIN SIZE DISTRIBUTION EXPRESSED AS PERCENT FINER BY DRY WEIGHT

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>FINES</th>
<th>SANDS</th>
<th>GRAVEL</th>
<th>ATTERBERG LIMITS</th>
<th>Unified Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.007</td>
<td>0.005</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>20</td>
<td>28</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>68</td>
<td>24</td>
<td>81</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>52</td>
<td>63</td>
<td>71</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>29</td>
<td>32</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>32</td>
<td>36</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>7</td>
<td>61</td>
<td>78</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>32</td>
<td>37</td>
<td>40</td>
<td>49</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>14</td>
<td>19</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>24</td>
<td>34</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries and additional columns for specific calculations and classifications.
GRAIN SIZE ANALYSIS FOR

(Specify)

Project and state

Designed at ____________ By ____________ Date ____________

Diagram Description:

- **Fines (mm):**
 - Sieve opening (mm) on the y-axis.
 - Percent finer by dry weight on the x-axis.
 - Finer sizes are indicated by bars on the right side.

- **Gravels:**
 - 0.0001 to 0.001
 - 0.0001 to 0.0005
 - 0.0005 to 0.0001
 - 0.0001 to 0.00005
 - 0.00005 to 0.00001
 - 0.00001 to 0.000005

- **Sands:**
 - 0.001 to 0.0005
 - 0.0005 to 0.0001
 - 0.0001 to 0.00005
 - 0.00005 to 0.00001
 - 0.00001 to 0.000005

- **Cobble Boulder:**
 - 0.0001 to 0.0005
 - 0.0005 to 0.0001
 - 0.0001 to 0.00005
 - 0.00005 to 0.00001
 - 0.00001 to 0.000005

- **Remarks:**

Revision: Mar 1987

98c
<table>
<thead>
<tr>
<th>Finishes</th>
<th>Sieve Opening (mm)</th>
<th>U.S. Standard Sieve Size</th>
<th>Percent Finer by Dry Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravels</td>
<td>0.012 - 0.250</td>
<td>5 - 250</td>
<td></td>
</tr>
<tr>
<td>Cobble</td>
<td>0.25 - 2.0</td>
<td>2.0 - 50</td>
<td></td>
</tr>
<tr>
<td>Boulder</td>
<td>2.0 - 50.0</td>
<td>50.0 - 200</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

Rev. Mar 1987
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 21 - PROBLEM WORKSHEET

<table>
<thead>
<tr>
<th>Soil number</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
<th>LL</th>
<th>PI</th>
<th>D₁₀</th>
<th>D₃₀</th>
<th>D₆₀</th>
<th>Cu</th>
<th>Cc</th>
<th>USCS Symbol & Group Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 21 - SOLUTION

<table>
<thead>
<tr>
<th>Soil number</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
<th>LL</th>
<th>PI</th>
<th>D<sub>10</sub></th>
<th>D<sub>30</sub></th>
<th>D<sub>60</sub></th>
<th>Cu</th>
<th>Cc</th>
<th>USCS symbol and group Name*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>65</td>
<td>5</td>
<td>19</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>SM</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>22</td>
<td>28</td>
<td>40</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>ML</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>86</td>
<td>9</td>
<td>--</td>
<td>NP</td>
<td>0.09</td>
<td>0.15</td>
<td>0.36</td>
<td>4.0</td>
<td>0.7</td>
<td>SP-SM</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>68</td>
<td>0</td>
<td>22</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>SC-SM</td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td>11</td>
<td>0</td>
<td>72</td>
<td>42</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>CH</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>36</td>
<td>52</td>
<td>32</td>
<td>12</td>
<td>0.005</td>
<td>0.6</td>
<td>13.0</td>
<td>2600</td>
<td>5.5</td>
<td>GP-GC</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>40</td>
<td>41</td>
<td>20</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>GM</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>86</td>
<td>6</td>
<td>24</td>
<td>4</td>
<td>0.09</td>
<td>0.29</td>
<td>0.82</td>
<td>9.1</td>
<td>1.1</td>
<td>SW-SM</td>
</tr>
<tr>
<td>9</td>
<td>79</td>
<td>21</td>
<td>0</td>
<td>53</td>
<td>22</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>MH</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>21</td>
<td>41</td>
<td>39</td>
<td>16</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>GC</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>24</td>
<td>71</td>
<td>--</td>
<td>NP</td>
<td>0.21</td>
<td>4.9</td>
<td>11.5</td>
<td>55</td>
<td>9.9</td>
<td>GP-GM</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>50</td>
<td>2</td>
<td>54</td>
<td>27</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>SC</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>97</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0.12</td>
<td>0.16</td>
<td>0.23</td>
<td>1.9</td>
<td>0.9</td>
<td>SP</td>
</tr>
<tr>
<td>14</td>
<td>58</td>
<td>25</td>
<td>17</td>
<td>48</td>
<td>22</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>CL</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>36</td>
<td>60</td>
<td>--</td>
<td>NP</td>
<td>0.21</td>
<td>2.0</td>
<td>13.5</td>
<td>64</td>
<td>1.4</td>
<td>GW</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>89</td>
<td>0</td>
<td>26</td>
<td>7</td>
<td>0.05</td>
<td>0.13</td>
<td>0.2</td>
<td>4</td>
<td>1.7</td>
<td>SP-SC</td>
</tr>
<tr>
<td>17</td>
<td>28</td>
<td>30</td>
<td>42</td>
<td>24</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>GC-GM</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>36</td>
<td>58</td>
<td>--</td>
<td>NP</td>
<td>0.15</td>
<td>2.0</td>
<td>12.7</td>
<td>85</td>
<td>2.1</td>
<td>GW-GM</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>44</td>
<td>52</td>
<td>--</td>
<td>--</td>
<td>0.11</td>
<td>0.34</td>
<td>9.0</td>
<td>82</td>
<td>0.1</td>
<td>GP</td>
</tr>
<tr>
<td>20</td>
<td>71</td>
<td>29</td>
<td>0</td>
<td>22</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>CL-ML</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>73</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td>0.84</td>
<td>2.8</td>
<td>14</td>
<td>1.3</td>
<td>SW</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>46</td>
<td>43</td>
<td>24</td>
<td>4</td>
<td>0.05</td>
<td>0.65</td>
<td>5.1</td>
<td>102</td>
<td>1.7</td>
<td>SW-SC</td>
</tr>
<tr>
<td>23</td>
<td>12</td>
<td>71</td>
<td>17</td>
<td>22</td>
<td>4</td>
<td>0.05</td>
<td>0.39</td>
<td>1.6</td>
<td>32</td>
<td>1.9</td>
<td>SW-SC</td>
</tr>
</tbody>
</table>

*See next page for group name.

Revised Feb 1987
PART B - UNIFIED SOIL CLASSIFICATION SYSTEM USING LABORATORY DATA

ACTIVITY 21 - SOLUTION

<table>
<thead>
<tr>
<th>Soil number</th>
<th>USCS group name and modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SM - SILTY SAND</td>
</tr>
<tr>
<td>2</td>
<td>ML - GRAVELLY SILT WITH SAND</td>
</tr>
<tr>
<td>3</td>
<td>SP-SM - POORLY GRADED SAND WITH SILT</td>
</tr>
<tr>
<td>4</td>
<td>SC-SM - SILTY, CLAYEY SAND</td>
</tr>
<tr>
<td>5</td>
<td>CH - FAT CLAY</td>
</tr>
<tr>
<td>6</td>
<td>GP-GC - POORLY GRADED GRAVEL WITH CLAY AND SAND</td>
</tr>
<tr>
<td>7</td>
<td>GM - SILTY GRAVEL WITH SAND</td>
</tr>
<tr>
<td>8</td>
<td>SW-SM - WELL-GRADED SAND WITH SILT</td>
</tr>
<tr>
<td>9</td>
<td>MH - ELASTIC SILT WITH SAND</td>
</tr>
<tr>
<td>10</td>
<td>GC - CLAYEY GRAVEL WITH SAND</td>
</tr>
<tr>
<td>11</td>
<td>GP-GM - POORLY GRADED GRAVEL WITH SILT AND SAND</td>
</tr>
<tr>
<td>12</td>
<td>SC - CLAYEY SAND</td>
</tr>
<tr>
<td>13</td>
<td>SP - POORLY GRADED SAND</td>
</tr>
<tr>
<td>14</td>
<td>CL - SANDY LEAN CLAY WITH GRAVEL</td>
</tr>
<tr>
<td>15</td>
<td>GW - WELL-GRADED GRAVEL WITH SAND</td>
</tr>
<tr>
<td>16</td>
<td>SP-SC - POORLY GRADED SAND WITH SILTY CLAY</td>
</tr>
<tr>
<td>17</td>
<td>GC-GM - SILTY, CLAYEY GRAVEL WITH SAND</td>
</tr>
<tr>
<td>18</td>
<td>GW-GM - WELL-GRADED GRAVEL WITH SILT AND SAND</td>
</tr>
<tr>
<td>19</td>
<td>GP - POORLY GRADED GRAVEL WITH SAND</td>
</tr>
<tr>
<td>20</td>
<td>CL-ML - SILTY CLAY WITH SAND</td>
</tr>
<tr>
<td>21</td>
<td>SW - WELL-GRADED SAND WITH GRAVEL</td>
</tr>
<tr>
<td>22</td>
<td>SW-SC - WELL-GRADED SAND WITH SILTY CLAY AND GRAVEL</td>
</tr>
<tr>
<td>23</td>
<td>SW-SC - WELL-GRADED SAND WITH SILTY CLAY AND GRAVEL</td>
</tr>
</tbody>
</table>
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

CONTENTS

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Objectives</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>Flow chart</td>
<td>107</td>
</tr>
<tr>
<td>3</td>
<td>Grain size and gradation</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>Liquid limit evaluation</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>Dilatency test</td>
<td>113</td>
</tr>
<tr>
<td>6</td>
<td>Toughness test and Plasticity Evaluation</td>
<td>115</td>
</tr>
<tr>
<td>7</td>
<td>Ribbon test</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>Shine test</td>
<td>119</td>
</tr>
<tr>
<td>9</td>
<td>Dry strength test</td>
<td>121</td>
</tr>
<tr>
<td>10</td>
<td>Odor test</td>
<td>123</td>
</tr>
<tr>
<td>11</td>
<td>Evaluation of sands and gravels</td>
<td>125</td>
</tr>
<tr>
<td>12</td>
<td>Field description of fine-grained soils</td>
<td>127</td>
</tr>
<tr>
<td>13</td>
<td>Field description of coarse-grained soils</td>
<td>129</td>
</tr>
<tr>
<td>14</td>
<td>Borderline classifications</td>
<td>131</td>
</tr>
<tr>
<td>15</td>
<td>Questions on field classification</td>
<td>133</td>
</tr>
<tr>
<td>16</td>
<td>Field procedures on known samples</td>
<td>135</td>
</tr>
<tr>
<td>17</td>
<td>Classification of unknown samples</td>
<td>137</td>
</tr>
</tbody>
</table>

103
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 1 - OBJECTIVES

At the completion of Part C, you will be able to:

1. Identify the flow chart and describe how it is used to classify soils in the Unified Soil Classification System (USCS) using field procedures.

2. Describe from a list each of the important field tests used in classifying soils in the USCS.

3. Correctly classify all 14 field classes in the USCS using manual field tests and the flow chart.
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 2 - FLOW CHART

An important reference used to classify soils by field classification is the flow chart on the next page. To use the flow chart, begin on the left edge and branch as decisions are made as shown.

The classification process for the fine-grained soils portion of the chart is not a flow chart process. For those soils, the field tests listed must be evaluated before classifying a fine-grained soil. However, each test result does not branch to the next test. The classification of a fine-grained soil is based on an overall evaluation of all the field tests listed.

You should familiarize yourself with the flow chart on the next page before proceeding.

START THE PLAYER WHEN YOU HAVE FINISHED
Flow Chart

Unified Soil Classification

Field Identification

Field Identification Procedures

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAN GRAVELS</td>
<td>Will not leave a dirt stain on a wet palm.</td>
<td>Predominantly one size or a range of sizes with some intermediate sizes missing.</td>
</tr>
<tr>
<td>DIRTY GRAVELS</td>
<td>Will leave a dirt stain on a wet palm.</td>
<td>Nonplastic fines or fines with low plasticity (for identification of fines see characteristics of ML below).</td>
</tr>
<tr>
<td>CLEAN SANDS</td>
<td>Will not leave a dirt stain on a wet palm.</td>
<td>Predominantly one size or a range of sizes with some intermediate sizes missing.</td>
</tr>
<tr>
<td>DIRTY SANDS</td>
<td>Will leave a dirt stain on a wet palm.</td>
<td>Nonplastic fines or fines with low plasticity (for identification of fines see characteristics of ML below).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soils and Clays (Low Liquid Limit)</th>
<th>Odor</th>
<th>Dry Strength</th>
<th>Dilatancy (Shake) Reaction</th>
<th>Toughness</th>
<th>Ribbon (near the pl.)</th>
<th>Shrinkation (near the pl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silts and Clays</td>
<td>Pronounced Organic</td>
<td>Medium to High</td>
<td>Slow to None</td>
<td>Medium to High</td>
<td>Weak to Strong</td>
<td>Slight to Shiny</td>
</tr>
<tr>
<td>Pronounced Organic</td>
<td>Medium</td>
<td>Very High</td>
<td>Very Slow to None</td>
<td>None</td>
<td>None</td>
<td>Dull to Slight</td>
</tr>
</tbody>
</table>

Highly Organic Soils

Readily identified by color, odor, spongy feel and frequently by fibrous texture.
The first step in field classification is to determine whether the soil is coarse-grained or fine-grained. Depending on the nature of the soil, this may be a purely visual determination, or it may include a manual evaluation of the texture of the sample.

To estimate gradation visually, spread the soil on a flat surface. Then, estimate the percentage of the soil that is larger than the No. 200 sieve, on a dry weight basis. Remember that a single gravel-sized particle will weigh as much as a considerable volume of fine-grained soil particles. No. 200 sized particles (0.074 mm in diameter) are about the smallest individual grain size that can be distinguished with the unaided human eye.

If a soil is not easily classified as fine-grained or coarse-grained solely on the basis of visual examination, you will need to manually evaluate the texture. This commonly is the case with sandy clays, clayey sands, very silty sands, and other similar soils. To evaluate the texture of these soils, place a representative sample in the palm of one hand and thoroughly wet it. Rub the wetted sample between your thumb and index finger. If you can discern grittiness, this usually indicates the soil has more than 50 percent coarser than the No. 200 sieve. Fine-grained soil has a silky texture. You can gain expertise in texture evaluation by comparing samples of known gradation. In the field exercise portion of this module, you will have this opportunity.

You must have sufficient sample to be representative of the soil being classified. The following guidelines are recommended for the size of sample to use for field classification:

<table>
<thead>
<tr>
<th>Maximum particle size in soil sample</th>
<th>Size of sample for field classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4 sieve</td>
<td>100 grams (1/4 pound)</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>200 grams (1/2 pound)</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>1,000 grams (2.2 pounds)</td>
</tr>
<tr>
<td>1-1/2 inch</td>
<td>8,000 grams (18 pounds)</td>
</tr>
<tr>
<td>3 inch</td>
<td>60,000 grams (132 pounds)</td>
</tr>
</tbody>
</table>
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 4 - LIQUID LIMIT EVALUATION

The first step in the field classification of a fine-grained soil is to determine whether the sample has a high or a low liquid limit value, greater than 50 percent or less than 50 percent.

This evaluation is made by selecting a representative sample of soil and manually removing as much as possible of the sample larger than the No. 40 sieve. A No. 40 sieve is helpful, if available. You should use about a tablespoon of soil that has been air-dried.

The sample is placed in the palm of one hand, and water is slowly added. After adding a little water, observe the speed of penetration of the water into the sample. This may be done by carefully lifting the wetted surface of the sample. Typically, soils with high liquid limits will not be penetrated by the added water as quickly as low liquid limit soils. This is due to the greater affinity to water of the higher liquid limit soils.

You should continue to slowly add water to the sample in your palm until the soil mass attains a soft putty-like state. Closely monitor the amount of water you have added to attain this state. While adding water, knead the sample occasionally to mix the soil and water thoroughly.

The amount of water added to reach a soft putty-like consistency is the measure of the liquid limit of the soil. You can gain experience in liquid limit evaluation by performing the test on samples with known liquid limit values.

Another procedure to determine the liquid limit is the cube test. Again mix water with a tablespoon of soil in the hand. Knead the soil thoroughly. Add sufficient water to bring the soil to the plastic state. No dry particles or lumps should be visible. Mold the soil pat into a cube. Flood the surface of the cube with water and immediately break open the cube. If water has penetrated into the inside of the cube this indicates that the soil has a low liquid limit. A high liquid limit is indicated if no water has penetrated the cube. Don't mistake water that flows into the inside during breaking for water that has actually penetrated the cube.

Estimating the liquid limit is the most difficult field evaluation for fine-grained soils. Fortunately, the other tests provide valuable supplemental information that aid in classifying and separating high liquid limit and low liquid limit soil.

START THE PLAYER WHEN YOU HAVE FINISHED
ACTIVITY 5 - DILATENCY TEST

This evaluation is performed on the soft, putty-like consistency soil pat that you will have after the liquid limit evaluation.

Mold the pat into a mass in the palm of one hand. Then, sharply strike the side of this palm against the other palm several times. Dilatent soils will develop a sheen on the surface of the pat. The pat will have a "livery" appearance. Then, when the pat is squeezed slightly, the pat's surface will quickly dull.

Observe the time that it takes for the water to disappear after squeezing. Low plasticity soils will usually react after 2-4 strikes. High plasticity soils usually show no reaction after 10 strikes.

Soils that are not dilatent will not develop a livery appearance and little change is apparent even after repeated strikes.

Dilatency may be rated as follows:

- Rapid - Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing.
- Slow - Water appears slowing on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing.
- None - No visible change in specimen.

Rapid dilatency reactions are typical of soils with low plasticity, particularly the ML classification. Soils with high plasticity such as the CH classification will have no dilatency reaction.

Several precautions are noteworthy for this evaluation. If you are using the test to evaluate the plasticity of the fines in a coarse-grained sample, the presence of substantial amounts of sand grains may accelerate this reaction and make it seem greater than it should. You should also be cautious not to start the test with a soil pat that has free water in it. Also, do not mistake the shiny appearance of some soils containing mica flakes for dilatency. Remember the livery appearance should disappear rapidly when squeezed to completely reflect a dilatent reaction.

See the flow chart for detailed typical reactions to this test for each classification of fine-grained soil.
ACTIVITY 6 - TOUGHNESS TEST AND PLASTICITY EVALUATION

Begin this test with the pat of soil that you will have after performing the dilatent evaluation. You should dry the pat of soil by repeatedly kneading the soil and slowly adding dry soil that passed through the No.40 sieve until you reach the plastic state of consistency. As you dry the sample, occasionally roll out on a flat surface a thread of soil about 1/8 inch in diameter. If you can readily roll out a thread without the thread crumbling or cracking, the soil is at water contents above the plastic limit. You should continue drying the soil by kneading and rolling until the 1/8-inch thread just begins to crack or crumble. At this point you will have reached the plastic limit water content of the soil and should evaluate toughness at that point. Also evaluate the formation of a lump from the thread you have.

Plasticity characteristics of the soil are evaluated on the basis of the soil's behavior as you dry the sample from the liquid limit to the plastic limit water content, according to the following criteria:

- **High** - Rolling and kneading to reach the plastic limit takes considerable time. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

- **Medium** - The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.

- **Low** - The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.

- **Nonplastic** - A 1/8-inch thread cannot be rolled at any water content.

Toughness is described according to the following criteria:

- **High** - Considerable pressure is required to roll the thread to near the plastic limit. The thread and the lump have very high stiffness.

- **Medium** - Medium pressure is required to roll the thread to near the plastic limit. The thread and the lump have medium stiffness.

- **Low** - Only slight pressure is required to roll the thread near the plastic limit. The thread and the lump are weak and soft.
ACTIVITY 6 - Continued

Your flow chart has typical toughness and plasticity evaluations for all of the fine-grained classifications. You should review these before proceeding. You can gain experience in the use of this test by performing it on samples of known plasticity during the field exercise portion of this module.

You should remember that significant amounts of sand included in the sample will affect this evaluation drastically.
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 7 - RIBBON TEST

A pat of soil with particles larger than the No. 40 sieve removed should be prepared at a water content slightly above the plastic limit by kneading soil with water to a medium putty-like consistency. A ribbon of soil is formed by extruding the pat of soil with the pressure of your thumb forced over the outside of your index finger. You should create a ribbon of soil perhaps 1/2 inch wide and as long as possible. Evaluate the strength of the ribbon by holding one end and gently shaking the ribbon until it breaks under its own weight.

Typical reactions to this evaluation for each classification of fine-grained soil are shown in your flow chart. High ribbon strength is typical of soils with high plasticity such as the CH classification.

Ribbon strength may be rated as follows:

- strong
- weak to strong
- weak
- none (no ribbon can be formed)
ACTIVITY 8 - SHINE TEST

A pat of soil used in the toughness test may be used for this evaluation. The pat should be cut with a knife blade, or a smooth object such as your fingernail may be used to stroke the pat and create a smooth surface. The surface created on the pat is observed closely under direct light. Soils with high plasticity typically have a shiny appearance, and soils with low plasticity have a dull appearance.

You should not mistake the shininess of soils that contain mica for the shininess created by the colloidal content of clays. Performing the test at water contents near the plastic limit is important to avoid the appearance of free water on the sample pat for shininess.

Shininess may be rated as follows:

- shiny
- slight to shiny
- dull to slight
- dull
- none

Typical shininess evaluations for each of the fine-grained classifications are shown in your flow chart. You should review these before you continue.
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 9 - DRY STRENGTH TEST

Prepare a representative sample of soil by removing as much of the soil larger than the No.40 sieve as possible. Add sufficient water to the soil to mold into about a 1/2-inch ball or cube. Allow the cube to dry completely either by setting in the sun for several hours or air-drying overnight.

Dry strength of the dried soil cube is then evaluated by breaking it with finger/thumb pressure. High dry strength is typical of soils with high plasticity such as the CL and CH classifications. Low dry strength is typical of low plasticity soils such as the ML classification.

Substantial amounts of sand in the sample tested will affect the results significantly.

Dry strength may be rated as follows:

- Very high - The dry cube cannot be broken between the thumb and a hard surface.

- High - The dry cube cannot be broken with finger pressure. Specimen will break into pieces between thumb and hard surface.

- Medium - The dry cube breaks into pieces or crumbles with considerable finger pressure.

- Low - The dry cube crumbles into powder with some finger pressure.

- None - The dry cube crumbles into powder with mere pressure of handling.

You will gain experience by testing samples that have known plasticity characteristics. Use these samples from the field exercise portion of this module.

Note: If the soil being classified is dry, the dry strength of natural clods may be evaluated rather than forming a ball and drying it. Natural clods, however, will have lower strengths than molded lumps.

Calcium carbonate or other cementing agents may cause some soils to exhibit dry strengths higher than expected. The results of the dry strength test may not correlate with the plasticity evaluated by the other field tests because of the presence of these cementing agents.

Study the typical reactions to the dry strength test for each USCS fine-grained classification on the flow chart before you continue.

START THE PLAYER WHEN YOU HAVE FINISHED
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 10 - ODOR TEST

Organic soils are detectible by an organic odor when moist and warm. Usually, organic matter is visually discernible in these soils as well. Classification of organic soils is also based on evaluation of their liquid limits and plasticity characteristics, as shown on the flow chart, Activity 2.

Peat soils contain few mineral soil particles. They will have a pronounced organic odor, usually dark brown to black, a spongy consistency, and a fibrous texture.
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 11 - EVALUATION OF CLEAN AND DIRTY SANDS AND GRAVELS

DETERMINATION OF CLEAN OR DIRTY

For coarse-grained soil that is clean, you will need to determine whether it is well-graded or poorly graded. You will also have to determine whether sand or gravel is the predominant constituent in the soil.

Spread a representative sample on a flat surface. Visually estimate the percent of the sample larger than a No. 4 sieve and smaller than a No. 4 sieve. If you have a No. 4 sieve, it would be quite helpful in this estimate for separating the sample and evaluating the respective weights of the plus and minus No. 4 size particles, gravels and sands.

Coarse-grained soil is then evaluated as to whether it is clean or dirty. Two procedures may be helpful. One evaluation is made by placing a sample of the soil in your palm and wetting with clean water. Dirty coarse-grained soils will leave an obvious stain on your palm after brushing off the coarse-grained part. After letting your palm dry, the stain can be observed more closely. Fines in a dirty soil will create a powdery residue after drying. Another method of evaluating whether a coarse-grained soil is dirty or clean is to drop a representative sample in a beaker of clean water. Observe the formation of a cloud in the water. Silt and clay size particles will remain in suspension longer than 30 seconds, and an appreciable cloud after that time indicates dirty coarse-grained soils.

CLEAN SAND AND GRAVEL

For clean sands and gravels, you should determine whether the soil is well-graded or poorly graded. In the field, this is necessarily a visual determination. You should recall that a well-graded coarse-grained soil has a wide range of particle sizes, and that it has about equal amounts of each size particle represented. A poorly graded soil is predominately one size of particle, or it has a range of particle sizes missing from its gradation.

An example of a poorly graded sand is one that you might find on a beach. The sand would be entirely one size of grain. An example of a well-graded gravel would be one that you might find in a gravel pit located in a large river flood plain.

DIRTY SAND AND GRAVEL

For dirty sands and gravels, you should manually separate the particles larger than the No. 40 sieve. Next, evaluate the plasticity characteristics. Use the same field procedures that was described for the fine-grained soils. Evaluating the liquid limits in not necessary. Classification of dirty coarse-grained soil depends only on whether the minus No. 40 fraction plots above or below the "A"-line.

START THE PLAYED WHEN YOU HAVE FINISHED
ACTIVITY 12 - FIELD DESCRIPTION OF FINE-GRAINED SOILS

In addition to classification of a soil with its proper USCS symbol, you should also describe in detail the characteristics of the soil as shown below:

Group name: Include the group name of the soil, as covered in part B of this module. The entire group name is based on your estimate of the percent of sand or gravel, or both, in the soil.

Organic content: Describe any organic odor and typical dark-brown or black color as well as the presence of partially decayed leaves, twigs, roots, and other organic matter.

Structural characteristics of individual classification symbols:

Stratified - soil consists of alternating layers of varying soils or color. If layers are less than about 1/4-inch thick, describe as laminated, or varved if layers are fine-grained.

Fissured - soil breaks along definite planes of fracture with little resistance to fracturing. If the fractures appear polished or glossy, they should be described as slickensided.

Blocky - soil can be easily broken into small angular lumps which resist further breakdown.

Homogeneous - soils have none of the above discernible structural characteristics.

Water content condition: Describe as dry, moist, wet, or saturated.

Consistency: The consistency of wet or saturated fine-grained soil may be evaluated and described as follows:

Soft - In-place soil easily penetrated several inches by thumb.

Medium (or firm) - penetrated several inches by thumb with moderate effort.

Stiff - readily indented by thumb, but penetrated only with great effort.

Very stiff - readily indented by thumbnail.

Hard - indented with difficulty by thumbnail.
ACTIVITY 12 - Continued

Local or geologic name: Describe origin if known, such as loess, weathered shale, alluvium, colluvium, or lasustrine

An example description of a fine-grained soil, which satisfies most of the above guidelines, follows:

Soft in place. Non-stratified, but with numerous vertical root holes.

Loess. ML (Silt)
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 13 - FIELD DESCRIPTION OF COARSE-GRAINED SOILS

In addition to classifying a soil with its proper USCS symbol, describe additional characteristics of the soil as follows:

Particle size description

Estimate the percent of the total soil that is cobble or boulder sized particles. Estimate the percent gravel, percent sand, and percent fines in the soil finer than 3 inch.

Describe the grain shape of the sand and gravel in the soil. The following terms are used:

- **Angular** - particles have sharp edges, and relatively plane sides, and with unpolished surfaces.
- **Subangular** - particles are similar to angular but have somewhat rounded edges.
- **Subrounded** - particles exhibit nearly plane sides but have well-rounded corners and edges.
- **Rounded** - particles have smoothly curved sides and no edges.

Group name: To complete the field description of coarse-grained soils, you should include the group name in addition to the USCS symbol of the soil. You will recall that the group name is based on the percentages of other grain sizes present in the soil and upon plasticity characteristics of the fine-grained portion of the soil. Part B of this module (Activities 14 and 15) contains details on group names.

Other descriptions

Add appropriate descriptive notes on the lithology of the coarse particles, color, natural water content, cementation, degree of compactness, local or geologic origin name, and structure.

The following information is used in these supplemental descriptions:

Structure:

- **Stratified** - soils consist of alternating layers of varying types of soil or colors. If layers are less than about 1/4 inch in thickness, describe as laminated or lensed.

- **Non-stratified** - soils are homogeneous
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 13 - Continued

Heterogeneous - Soil that has a mottled texture with pockets of differing nature.

Lithology - Describes hardness. Note especially the presence of mica flakes and shaly particles. Describes the parent rock source for granular pieces, such as quartz, limestone, etc.

Degree of compactness: Dense sand or gravel is difficult to penetrate more than a few inches with a 2- by 2-inch wooden stake. The stake may be easily driven into loose soil.

Particle shape: The particle shapes should be described as follows where length, width, and thickness refer to the greatest, intermediate, and least dimensions of a particle, respectively.

Flat - Particles with \[\frac{\text{width}}{\text{thickness}} \geq 3. \]

Elongated - Particles with \[\frac{\text{length}}{\text{width}} \geq 3. \]

Flat and elongated - Particles meet criteria for both flat and elongated.

Water content: Describe the water content using the following terms

Dry - Absence of moisture, dusty, dry to the touch.

Moist - Damp but no visible free water.

Saturated - Visible free water, usually soil is below water table.

An example description of a coarse-grained soil follows:

Alluvial Sand. About 5 percent cobbles with maximum size of 8 inches. About 20 percent gravel, 65 percent sand, and 15 percent fines. Gravel is subrounded, igneous origin. Sand is subrounded to subangular quartz. Light brown, moist and dense in place. Stratified. Not cemented. Well-graded size distribution. (SM) [Silty sand with gravel]
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 14 - BORDERLINE CLASSIFICATIONS

Because field classification is based on estimates of particle size distribution and plasticity characteristics rather than on laboratory data, clearly placing a soil in one category may be difficult. In those cases, a borderline classification may be used, separating two symbols with a slash. The following examples illustrate cases where borderline classification may be desirable.

When the estimated percent fines is between 45 and 55%: One symbol should be for a coarse-grained, dirty classification, and the other for a fine-grained soil. For example, GM/ML, CL/SC.

When the estimated percent sand and percent gravel are about equal. For example; GP/SP, SC/GC, GM/SM.

When the soil is not clearly well-graded or poorly graded. For example; GW/GP, SW/SP.

When plasticity characteristics are not clear on fine-grained soils. For example; CL/ML, CH/MH, and also when plasticity characteristics are not clear for dirty coarse-grained soils. For example, SC/SM.

When liquid limit determinations are not clear on fine-grained soils. For example; CL/CH, ML/MH, CL/MH.

Borderline symbols and classifications are used only when clearly placing a soil in a single classification is not possible. Every effort should be made to place a soil in a single classification before using a borderline designation.

Do not confuse the use of borderline classifications in field procedures with dual classification groups as used in laboratory determination procedures such as SP-SM, GP-GC. The dual classifications apply to coarse-grained soil that has between 5 and 12 percent fines and are a precise group identification rather than a borderline classification. The use of the slash (/) symbol designates the borderline use.
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 15 - QUESTIONS ON FIELD CLASSIFICATION

Answer the following questions

True or False

1. A CH soil has a rapid dilatancy reaction. ____

2. Evaluating the liquid limit of clean coarse-grained soils is not necessary. ____

3. Beach sand is an example of a poorly graded soil. ____

4. GW-GP is a good example of a borderline classification using field procedures. ____

Discussion Questions

5. In your own words, briefly list the procedures for running a

 a. Dilatency test

 b. Ribbon test

 c. Shine test

 d. Dry strength test

6. Discuss how you would use the flow chart to classify a fine-grained soil using field procedures.

START THE PLAYER WHEN YOU HAVE FINISHED

133
ACTIVITY 15 - SOLUTION

1. False.
2. True.
3. True.
4. False. It should be GW/GP.
5. a. Refer to Activity 5.
 b. Refer to Activity 7.
 c. Refer to Activity 8.
 d. Refer to Activity 9.
6. Refer to Activity 2.
PART C - UNIFIED SOIL CLASSIFICATION SYSTEM USING FIELD PROCEDURES

ACTIVITY 16 - FIELD PROCEDURES ON KNOWN SOIL SAMPLES

You will be given 14 samples representing each of the USCS field sample classes. Using the procedures in this module, develop expertise in each field test by comparing known laboratory data for each sample with your visual and manual identification tests.

Each sample will be clearly marked with its grain-size analysis, liquid limit and plasticity characteristics as well as the USCS.

Use the flow chart in Activity 2 and go through the field procedures step by step, verifying each step with given laboratory data.

Carefully evaluate the differences in liquid limit values for the range of soils given. Note that the two most difficult soil classes to differentiate between in this exercise are the MH and CL classes because they may have about the same plasticity index. The major difference is in the respective values of liquid limit. Because liquid limit is perhaps the most difficult field test to evaluate, the differentiation is difficult. Verify for yourself on the plasticity chart that these two soils can have similar values of PI.

Verify the usefulness of each of the field test procedures given. You will find that as you gain experience in field identification, all tests are not conclusive on every sample.

Therefore, consider all the field tests and concentrate on those field tests that you are able to evaluate the best. To evaluate the liquid limit and plasticity, no test should be eliminated without trying the test.

You may find the attached worksheet useful for recording the results of field identification tests performed on the fine-grained samples. Do not use this worksheet for clean coarse-grained soils. It may be used in recording test results for the plasticity characteristic identification tests on the dirty coarse-grained soils, but note that you will not need to perform the liquid limit test evaluation for those soils.

START THE PLAYER WHEN YOU HAVE FINISHED

135
Unified Soil Classification

Field Identification Tests

For Fine Grained Soils

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Liquid Limit</th>
<th>Dilatancy</th>
<th>Dry Strength</th>
<th>Toughness</th>
<th>Ribbon</th>
<th>Shine</th>
<th>Plasticity</th>
<th>CLASS SYMBOL</th>
<th>CLASS MODIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>High or Low</td>
<td>Rapid, Slow, or None</td>
<td>Very High, High, Medium, Low, or None</td>
<td>High, Medium, or Low</td>
<td>Strong, Weak, or None</td>
<td>Shiny, Dull, or None</td>
<td>High, Medium, Low, or Nonplastic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACTIVITY 17 - CLASSIFICATION OF UNKNOWN SOIL SAMPLES

The last Activity in Part C is to classify 14 unknown soil samples. You will be given the samples which have been air-dried but no other information is furnished.

Use the information previously given and the experience gained in classifying the 14 samples. One each of the 14 field classes is provided, and no two classes are duplicated.

After classifying each soil sample, you will be given the laboratory data for each sample. You may return to the samples and further verify any field tests.

A form is provided for recording the results of field identification tests on the fine-grained soils. The form may also be used for recording plasticity test results for the fines in the dirty coarse-grained samples. Record your observations on the clean coarse-grained soils separately.

START THE PLAYER WHEN YOU HAVE FINISHED
UNIFIED SOIL CLASSIFICATION

FIELD IDENTIFICATION TESTS
FOR FINE GRAINED SOILS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Liquid Limit</th>
<th>Dilatancy</th>
<th>Dry Strength</th>
<th>Toughness</th>
<th>Ribbon</th>
<th>Shine</th>
<th>Plasticity</th>
<th>CLASS SYMBOL</th>
<th>CLASS MODIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>High or Low</td>
<td>Rapid, Slow, or None</td>
<td>Very High, High, Medium, Low, or None</td>
<td>High, Medium, or Low</td>
<td>Strong, Medium, or None</td>
<td>Shiny, Dull, or None</td>
<td>High, Medium, Low, or Nonplastic</td>
<td>CLASS SYMBOL</td>
<td>CLASS MODIFIER</td>
<td></td>
</tr>
</tbody>
</table>
UNIFIED SOIL CLASSIFICATION

FIELD IDENTIFICATION TESTS
FOR FINE GRAINED SOILS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Liquid Limit</th>
<th>Dilatancy</th>
<th>Dry Strength</th>
<th>Toughness</th>
<th>Ribbon</th>
<th>Shine</th>
<th>Plasticity</th>
<th>CLASS SYMBOL</th>
<th>CLASS MODIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>High or Low</td>
<td>Rapid, Slow, or None</td>
<td>Very High, High, Medium, Low, or None</td>
<td>High, Medium, or Low</td>
<td>Strong, Weak, or None</td>
<td>Shiny, Dull, or None</td>
<td>High, Medium, Low, or Nonplastic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOIL MECHANICS -- LEVEL I

MODULE 1

UNIFIED SOIL CLASSIFICATION SYSTEM

APPENDIX 1

REFERENCES
REFERENCES

SOIL MECHANICS -- LEVEL I

MODULE 1

UNIFIED SOIL CLASSIFICATION SYSTEM

APPENDIX 2

GLOSSARY
GLOSSARY

APPENDIX 1

(A "D" in parenthesis after the term means that it is dimensionless)

"A" line -- The line on the plasticity chart that divides plastic and slightly plastic or nonplastic--plastic being above the line and slightly plastic or nonplastic below. It is defined by the equation: PI = 0.73 (LL-20).

Atterberg limits -- A general term denoting liquid limit, plastic limit and shrinkage limit.

Boulder -- A rock fragment, usually rounded by weathering or abrasion, with an average dimension of 12 in. (300 mm) or more.

Clay -- Fine-grained soil or the fine grained portion of soil that exhibits (1) plasticity (putty-like properties) within a range of water contents and (2) considerable strength when air-dry.

Clean soil -- A soil that has less than 5 percent finer than the No. 200 sieve size.

Coarse-grained soil -- The minus 3-in. (75 mm) fraction of a soil having a gradation such that more than 50 percent by dry weight is retained on a No. 200 (75 mm) sieve.

Cobble -- A rock fragment, usually rounded or subrounded, with a minimum dimension ranging between 3 in. (75 mm) and 12 in. (300 mm).

Coefficient of curvature, Cc (D) -- A coefficient used in evaluating the grading characteristics of coarse-grained soils. It is calculated from the expression \((D_{30})^2/(D_{10} \times D_{60})\) where \(D_{10}\), \(D_{30}\), and \(D_{60}\) are the particle diameters corresponding to 10, 30, and 60 percent finer on the grain size distribution curve.
Coefficient of uniformity, Cu (D) -- A coefficient used in evaluating the grading characteristics of coarse-grained soils. It is calculated from the expression: D_{60}/D_{10} where D_{10} and D_{60} are the particle diameters corresponding to 10 and 60 percent finer on the grain size distribution curve.

Consistency -- The relative ease with which a soil can be deformed.

$D_{5}, D_{10} \ldots D_{85}$ size (mm or in.) -- The particle diameter corresponding to the 5, 10 \ldots 85 percent finer by dry weight on the grain size distribution curve.

Dilatancy test -- A test used to indicate the presence of significant amounts of rock flour, silt, or very fine sand in a fine-grained soil. It consists of shaking a pat of wet soil, having a consistency of thick paste, in the palm of the hand; observing the surface for a glossy or livery appearance; squeezing the pat; and observing if a rapid apparent drying and subsequent cracking of the soil occurs.

Dirty soil -- A soil that has more than 12% percent finer than the No. 200 sieve size.

Dry strength test -- A visual-manual test performed on the fraction of a soil finer than the No. 40 (425-mm) sieve for the purpose of evaluating crushing characteristics; used as an aid to field classification of soil.

Fined-grained soil -- The minus 3-in. (75-mm) fraction of a soil having a gradation such that 50 percent or more by dry weight passes a No. 200 (75-mm) sieve.

Fines -- Portion of a soil finer than a NO. 200 (75-mm) U.S. standard sieve.
Gap-graded -- A soil that has a range of particle sizes missing from its gradation.

Gradation -- (grain-size distribution) -- Distribution of grain sizes present in a given soil.

Gravel -- Rounded or semirounded particles of rock that will pass a 3-in. (75 mm) and be retained on a No. 4 (4.75 mm) U.S. standard sieve.

Group name -- A descriptive term used to provide additional information to the USCS symbol. It usually consists of a primary descriptive term and an appropriate modifier based on its sand and/or gravel content. (Clayey gravel with sand is an example).

Liquid limit, LL (D) -- (a) The water content corresponding to the arbitrary limit between the liquid and plastic states of consistency of a soil.
 (b) The water content at which a pat of soil, cut by a grove of standard dimensions, will flow together for a distance of 1/2 in. under the impact of 25 blows in a standard liquid limit apparatus.

Nonplastic, NP -- A term applied to a soil that exhibits no plasticity, or $\text{PI} = 0$.

Organic soils -- Soils that usually have a pungent odor when moist and warm. They usually are dark brown to gray to black in color, and have a liquid limit value that is significantly affected by oven-drying of the soil prior to testing.

Peat -- A highly organic soil composed primarily of vegetable tissue in various states of decomposition. It usually has a strong odor, a dark brown to black color, and a texture ranging from fibrous to amorphous.
Plasticity -- The property of a soil which allows it to be deformed beyond the point of recovery without cracking or appreciable volume change.

Plasticity index, PI (D) -- Numerical difference between the liquid limit and the plastic limit.

Plastic limit, PL (D) -- (a) The water content corresponding to an arbitrary limit between the plastic and the semisolid states of consistency of a soil.
(b) Water content at which a soil being dried will just begin to crumble when rolled into a thread approximately 1/8 in. (0.32 mm) in diameter.

Plastic soil -- A soil that exhibits plasticity.

Plastic state -- The range of consistency within which a soil exhibits plastic properties.

Poorly graded soil -- A soil that contains a narrow range of particle sizes or one that has a range of particle sizes missing from its gradation.

Ribbon test -- A field test where a pat of soil near the plastic limit is squeezed between the thumb and forefinger to form a ribbon. The strength of the ribbon is then evaluated.

Sand -- Particles of rock that will pass the No. 4 (4.75 mm) sieve and be retained on the No. 200 (75-mm) U.S. standard sieve.

Coarse sand -- Sand passing the No. 4 sieve and retained on the No. 10 (2.0 mm) sieve.

Medium sand -- Sand passing the No. 10 sieve and retained on the No. 40 (425-mm) sieve.

Fine sand -- Sand passing the No. 40 sieve and retained on the No. 200 sieve.
Shrinkage limit, SL (D) -- The maximum water content at which a reduction in water content will not cause a decrease in volume of the soil mass.

Shine test -- A field test used in the USCS where a moist pat of soil is rubbed with a smooth object and the surface shine evaluated.

Silt -- Material passing the No. 200 (75-mm) U.S. standard sieve that is nonplastic or very slightly plastic and that exhibits little or no strength when air-dried.

Sieve -- A testing device with wire meshes on the bottom. Finer particles of a soil of various sizes are passed through a sieve to separate them from coarser ones.

Toughness test -- A visual-manual test performed on the fraction of a soil finer than the No. 40 (425-mm) sieve for the purpose of evaluating consistency near the plastic limit; used as an aid in the field classification of soil.

Water content, w (D) -- The ratio, expressed as a percentage of: (1) the weight of water in a given soil mass to (2) the weight of solid particles.

Well-graded soil -- A soil that contains a broad range of particle sizes and about equal amounts of each.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Purpose</td>
<td>1</td>
</tr>
<tr>
<td>II. General</td>
<td>1</td>
</tr>
<tr>
<td>III. References</td>
<td>1</td>
</tr>
<tr>
<td>Part A. Glossary</td>
<td>A-1</td>
</tr>
<tr>
<td>Part B. Symbols</td>
<td>B-1</td>
</tr>
<tr>
<td>Part C. Abbreviations</td>
<td>C-1</td>
</tr>
<tr>
<td>Part D. Common Units and Conversion Factors</td>
<td>D-1</td>
</tr>
</tbody>
</table>
Soil Mechanics Note No. 6: Glossary, Symbols, Abbreviations, and Conversion Factors

I. Purpose

This Note is a guide to standardizing terms, symbols, abbreviations, and units in SCS geotechnical engineering reports, papers, notes, and handbook materials.

II. General

The ASTM and the ASCE have collaborated in the development of contents of ASTM Designation D653, "Terms and Symbols Relating to Soil and Rock Mechanics". As much as possible, terms and symbols from that designation have been incorporated in this Note. Other terms and symbols have been added.

Specific units of measurement, rather than general units, are presented in the Glossary in both the U.S. and the metric systems.

III. References

The principal references that were reviewed prior to compiling this Note are listed below. Many others, including SCS soil mechanics forms and training materials, were reviewed also.

f. SCS National Engineering Handbook, various sections.

This Note prepared by Donald M. Sundberg, under direction of David C. Ralston, with comments by EWP Unit and SML engineers.

h. Diagnosis and Improvement of Saline and Alkali Soils, Agriculture Handbook No. 60, USDA, 1954.

Soil Mechanics Note No. 6

Glossary, Symbols, Abbreviations, and Conversion Factors

March, 1976
SOIL MECHANICS -- LEVEL I

MODULE 1

APPENDIX 3

SOIL MECHANICS NOTE NO. 6

(GLOSSARY, SYMBOLS, ABBREVIATIONS, AND CONVERSION FACTORS)
"A" horizon -- See horizon.
Absorbed water -- Water held mechanically in a soil mass and having physical properties not substantially different from ordinary water at the same temperature and pressure.
Active earth pressure -- See earth pressure.
Activity index of clay, $a_c (D)^*$ -- The ratio of: (1) plasticity index to (2) percent of the total sample smaller than 0.002 mm. by dry weight.
Adsorbed water -- Water in a soil mass, held by physicochemical forces, having physical properties substantially different from absorbed water or chemically combined water, at the same temperature and pressure.
Aeolian deposits -- Wind-deposited material such as dune sands and loess.
Aggregate -- A material composed of sand and/or gravel, usually having a known range of particle sizes.
A-line -- The line on Casagrande's plasticity chart that divides clays and silts--clays being above the line and silts below. It is defined by the equation: $PL = 0.73 (LL - 20)$.
Allowable bearing value, q_a (kg/cm2 or ksf) -- The maximum pressure that can be permitted on foundation soil, giving consideration to all pertinent factors, with adequate safety against (1) rupture of the soil mass or (2) foundation movement of such magnitude that the structure is impaired.
Allowable pile bearing load, Q_a (kg or lb) -- The maximum load that can be permitted on a pile with adequate safety against movement of such magnitude that the structure is endangered.
Alluvium -- Soil which has been transported in suspension by flowing water and subsequently deposited by sedimentation.
Angle of external friction, δ (degrees) -- Angle between the abscissa and the tangent of the curve representing the relationship of shearing resistance to normal stress acting between soil and surface of another material.
Angle of internal friction, ϕ, θ (degrees) -- Angle between the abscissa and the tangent of the curve representing the relationship of shearing resistance to normal stress acting within a soil.
Angle of repose, α (degrees) -- Angle between the horizontal and the maximum slope that a granular soil assumes through natural processes.
Anisotropic mass -- A mass having different properties in different directions at any given point.
Apparent cohesion -- See cohesion.
Apparent specific gravity -- See specific gravity.
Aquifer -- A water-bearing stratum or formation that provides a ground water reservoir.
Arching -- The transfer of stress from a yielding part of a soil mass to adjoining less-yielding or restrained parts of the mass.
Area of influence of a well, a_w (m^2 or sq ft) -- Area surrounding a well within which the piezometric surface has been lowered when pumping has produced the maximum steady rate of flow.
Atterberg limits -- A general term denoting liquid limit, plastic limit and shrinkage limit.
"B" horizon -- See horizon.
Base course -- A layer of specified or selected material of planned thickness constructed on the subgrade or subbase for the purpose of serving one or more functions such as distributing load, providing drainage, and minimizing frost action.

Base material -- In filter design, any material (embankment, backfill, foundation, or other filter material) through which water moves into a drainage system.

Bearing capacity -- Allowable bearing value.

Bearing capacity of a pile, \(Q_p \) (kg or lb) -- The load per pile required to produce a condition of failure.

Bedding material -- A layer or zone of material placed on the base or foundation to bed the designed structure. The bedding may distribute the applied load, fill the interface voids, or provide a transition in intergranular void size.

Bedrock -- The more or less solid, hard, and undisturbed rock in place.

Bentonitic clay -- A clay with a high content of the mineral montmorillonite, usually characterized by high swelling on wetting.

Berm -- A shelf that breaks the continuity of a slope.

Blind well -- A relief well that consists solely of either drain material or drain and filter materials.

Blow count, \(N \) (blows/ft) -- See standard penetration test.

Borrow -- Soil or other material planned for removal, or removed, for use as a construction material.

Boulder -- A rock fragment, usually rounded by weathering or abrasion, with an average dimension of 12 in. (300 mm) or more.

Boulder clay -- A geological term used to designate glacial drift that has not been subjected to the sorting action of water and contains particles from boulders to clay sizes.

Bulking -- The increase in volume of a material due to manipulation. Rock bulks upon being excavated; damp sand bulks if loosely deposited, as by dumping, because the apparent cohesion prevents movement of the soil particles to form a reduced volume.

Bulk specific gravity -- See specific gravity.

"O" horizon -- See horizon.

Capillary action -- The rise or movement of water in the interstices of a soil due to capillary forces.

Capillary flow -- The movement of water by capillary action.

Capillary fringe zone -- The zone in a soil mass above the free water elevation in which water is held by capillary action.

Capillary head, \(h \) (m or ft) -- The potential, expressed in height of water column, that causes water to flow by capillary action.

Capillary rise, \(h_c \) (m or ft) -- The height above a free water elevation to which water will rise by capillary action.

Capillary stress -- See stress.

Capillary water -- See soil water.

Cation exchange -- The physicochemical process whereby one species of cation adsorbed on soil particles is replaced by another species.

Cation exchange capacity, CEC (meq/100 g) -- The total exchangeable cations that a soil can adsorb from a solution of specified concentration and pH.

Centrifuge moisture equivalent -- See moisture equivalent.
Clay -- Fine-grained soil or the fine-grained portion of soil that exhibits (1) plasticity (putty-like properties) within a range of moisture contents and (2) considerable strength when air-dry.

Clay minerals -- Groups of extremely small solid substances, primarily crystalline, that are the chief constituents of clays and largely determine their engineering properties.

Clay size -- That portion of the soil finer than 0.002 mm (0.005 mm in some cases).

Coarse-grained soil -- The minus 3-in. (75 mm) fraction of a soil having a gradation such that more than 50 percent by dry weight is retained on a No. 200 (75-μm) sieve.

Cobble -- A rock fragment, usually rounded or subrounded, with a minimum dimension ranging between 3 in. (75 mm) and 12 in. (300 mm).

Coefficient of active earth pressure -- See coefficient of earth pressure.

Coefficient of compressibility, a_v (cm2/g or sq ft/lb) -- The secant slope, for a given pressure increment, of the void ratio-pressure curve; it is calculated as: $a_v = \Delta e/\Delta p$. Where a stress-strain curve is used,

$$a_v = \frac{\Delta e}{\Delta p} (1 + e_0).$$

Coefficient of consolidation, c_v (cm2/sec or sq ft/day) -- A coefficient utilized in the theory of consolidation, containing the physical constants of a soil affecting its rate of volume change.

$$c_v = \frac{k (1 + e)}{a_v \gamma_w}$$

where:

- k = coefficient of permeability (cm/s or fpd),
- e = void ratio (D),
- a_v = coefficient of compressibility (cm2/g or sq ft/lb), and
- γ_w = unit weight of water (g/cm3 or pcf)

Coefficient of curvature, C_z (D) -- A coefficient used in evaluating the grading characteristics of coarse-grained soils. It is calculated from the expression: $\left(\frac{D_{30}}{D_{10} \times D_{60}}\right)^2$ where D_{10}, D_{30}, and D_{60} are the particle diameters corresponding to 10, 30, and 60 percent finer on the gradation curve.

Coefficient of earth pressure, K (D) -- The principal stress ratio at a point in a soil mass.

Coefficient of earth pressure, active, K_a (D) -- The minimum ratio of: (1) the minor principal stress to (2) the major principal stress. This is applicable where the soil has yielded sufficiently to develop a lower limiting value of the minor principal stress.

Coefficient of earth pressure, at rest, K_o (D) -- The ratio of: (1) the minor principal stress to (2) the major principal stress. This is applicable where the soil mass is in its natural state without having been permitted to yield or without having been compressed.

Coefficient of earth pressure, passive, K_p (D) -- The maximum ratio of: (1) the major principal stress to (2) the minor principal stress. This is applicable where the soil has been compressed sufficiently to develop an upper limiting value of the major principal stress.

Coefficient of internal friction -- The tangent of the angle of internal friction (see internal friction).
Coefficient of permeability, \(k \) (cm/s or fps) -- The rate of discharge of water under laminar flow conditions through a unit cross-sectional area of a porous medium under a unit hydraulic gradient and standard temperature conditions (usually 20° C).

Coefficient of pore pressure -- See pore pressure coefficients.

Coefficient of secondary consolidation, \(C_Q \) (D) -- The slope of the final portion of the consolidation-time curve on a semi-log plot.

Coefficient of uniformity, \(C_u \) (D) -- A coefficient used in evaluating the grading characteristics of coarse-grained soils. It is calculated from the expression: \(D_{60}/D_{10} \) where \(D_{10} \) and \(D_{60} \) are the particle diameters corresponding to 10 and 60 percent finer on the gradation curve.

Coefficient of volume compressibility, \(m_v \) (cm\(^2\)/g or sq ft/lb) -- The compression of a soil layer per unit of original thickness due to a given unit increase in pressure. It is numerically equal to the coefficient of compressibility divided by one plus the original void ratio, i.e. \(m_v = a_v/(1 + e_0) \).

Cohesion, \(c \) (kg/cm\(^2\) or ksf) -- The portion of the shear strength of a soil indicated by the term \(c \) in Coulomb's equation: \(s = c + \sigma \tan \phi \); also referred to as no-load shear strength.

Apparent cohesion -- Cohesion in granular soils due to capillary forces.

Cohesionless soil -- A soil that, when unconfined, has little or no strength when air-dried and has little or no cohesion when submerged.

Cohesive soil -- A soil that, when unconfined, has considerable strength when air-dried and has significant cohesion when submerged.

Collapsible soil -- A soil that undergoes reorientation of particles and reduction in volume under constant load when the moisture content is increased. The term is most applicable to in-situ soil having a loose particle arrangement and a moisture content considerably less than saturation.

Colloidal particles -- Soil particles that are so small that the surface activity has an appreciable influence on the properties of the aggregate.

Colluvium -- A heterogeneous soil near the base of strong slopes that has been moved by gravity, frost action, creep, or local wash.

Compaction -- The densification of a soil by means of mechanical manipulation.

Compaction curve -- The curve showing the relationship between the dry unit weight (density) and the moisture content of a soil for a given compactive effort.

Compaction test -- A compacting procedure whereby a soil at a known moisture content is placed in a specified manner into a mold of given dimensions, subjected to a compactive effort of controlled magnitude, and the resulting unit weight determined. The procedure is repeated for various moisture contents sufficient to establish a relation between moisture content and unit weight.

Modified compaction test -- One of the compaction procedures outlined in ASTM D-1557; the method used should be specified.

Standard compaction test -- One of the compaction procedures outlined in ASTM D-698; the method used should be specified.

Compressibility -- Property of a soil pertaining to its susceptibility to decrease in volume when subjected to load.
Compression index, $C_c (D)$ -- The slope of the linear portion of the void ratio-pressure curve on a semi-log plot during compression, i.e.

$$C_c = \frac{\Delta e}{\Delta \log p}.$$

Concentration factor, $n (D)$ -- A parameter used in modifying the Boussinesq equations to describe various distributions of vertical stress.

Cone penetration test -- A quasi-static procedure for field testing whereby a standard cone-shaped steel point, often with a friction sleeve, is pushed at a steady, slow rate into soil or soft rock. The resulting data provide a basis for estimating some engineering properties of the soil or rock penetrated.

Consistency -- The relative ease with which a soil can be deformed.

Consolidated-drained test, CD -- A soil shearing test in which essentially complete consolidation under the confining pressure is followed by additional axial (or shearing) stress applied in a manner, and with drainage, that prevents a build-up of pore water pressures during the shearing process.

Consolidated-undrained test, CU or CU -- A soil shearing test in which essentially complete consolidation under the confining pressure is followed by additional axial (or shearing) stress applied while the soil is kept at constant moisture content, i.e. drainage is not permitted.

Consolidation -- The gradual reduction in volume of a soil mass resulting from an increase in compressive stress.

Initial consolidation -- A comparatively sudden reduction in volume of a soil mass under an applied load due principally to expulsion and compression of gas in the soil voids preceding primary consolidation.

Primary consolidation -- The reduction in volume of a soil mass caused by the application of a sustained load to the mass and due principally to a squeezing out of water from the void spaces of the mass and accompanied by a transfer of the load from the soil water to the soil solids.

Secondary consolidation -- The reduction in volume of a soil mass caused by the application of a sustained load to the mass and due principally to the adjustment of the internal structure of the soil mass after most of the load has been transferred from the soil water to the soil solids.

Consolidation ratio, $U_z (D)$ -- The ratio of: (1) the amount of consolidation at a given distance from a drainage surface and at a given time to (2) the total amount of consolidation obtainable at that point under a given stress increment.

Consolidation test -- A test in which the specimen is laterally confined in a ring and is compressed between porous plates.

Consolidation-time curve -- A curve that shows the relation between: (1) percent consolidation and (2) the elapsed time after the application of a given increment of load.

Contact pressure, p (kg/cm² or ksf) -- The unit of pressure that acts at the surface of contact between a structure and the underlying soil mass.

Controlled-strain test -- A test in which the load is so applied that a controlled rate of strain results.

Controlled-stress test -- A test in which the stress to which a specimen is subjected is applied at a controlled rate.
Core -- The relatively impervious portion of a zoned earth embankment that serves as a barrier to water movement through the embankment; is usually located in the central portion of the embankment.

Creep -- Slow movement of rock debris or soil, usually imperceptible except to observations of long duration.

Critical density -- The unit weight of a saturated non-plastic material below which it will lose strength and above which it will gain strength when subjected to rapid deformation.

Critical height, \(H_c \) (m or ft) -- The maximum height at which a vertical or sloped bank of soil will stand unsupported under a given set of conditions.

Critical hydraulic gradient -- See hydraulic gradient.

Critical surface -- The sliding surface assumed in a theoretical analysis of a soil mass for which the factor of safety is a minimum.

Critical void ratio -- See void ratio.

Crumb test -- An index test for identification of dispersive clay soils.

\(D_5, D_{10} \ldots D_{85} \) size (mm or in.) -- The particle diameter corresponding to the 5, 10 \ldots 85 percent finer by dry weight on the gradation curve.

Deformation -- Change in shape.

Density -- See unit weight.

Desiccation -- The process of shrinkage or consolidation of fine-grained soil caused by drying.

Deviator stress, \(\sigma_1 - \sigma_3 \), (kg/cm² or ksf) -- The difference between the major and minor principal stresses in a triaxial test.

Dilatancy -- The expansion of soils when subject to shearing deformation.

Dilatancy test -- See shaking test.

Direct shear test -- A shear test in which soil under an applied normal load is stressed to failure by moving one section of the soil container (shear box) relative to the other section.

Discharge hydraulic gradient -- See hydraulic gradient.

Dispersing agent -- A chemical additive that prevents fine soil particles in suspension from coalescing to form flocs.

Dispersive clay soil -- A soil that (1) has a high percentage of sodium in the pore water salts and (2) is susceptible to rapid colloidal erosion from concentrated flow through cracks or openings in the soil.

Drain material -- Sand, gravel, or rock that has specific gradation limits for required permeability and internal stability.

Drawdown (m or ft) -- Vertical distance the water surface or the ground water elevation is lowered.

Dry strength test -- A visual-manual test performed on the fraction of a soil finer than the No. 40 (425-µm) sieve for the purpose of evaluating crushing characteristics; used as an aid to field classification and identification of soil.

Dry unit weight -- See unit weight.

Earth pressure -- The pressure or force exerted by soil on any boundary.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>(p) kg/cm² or ksf</td>
</tr>
<tr>
<td>Force</td>
<td>(P) kg or lb</td>
</tr>
</tbody>
</table>
Active earth pressure, \(P_a \), \(p_a \) -- The minimum value of earth pressure. This condition exists when a soil mass is permitted to yield sufficiently to cause its internal shearing resistance along a potential failure surface to be completely mobilized.

Earth pressure at rest, \(P_0 \), \(p_0 \) -- The value of earth pressure when the soil mass is in its natural state without having been permitted to yield or without having been compressed.

Passive earth pressure, \(P_p \), \(p_p \) -- The maximum value of earth pressure. This condition exists when a soil mass is compressed sufficiently to cause its internal shearing resistance along a potential failure surface to be completely mobilized.

Effective force, \(F \) (kg or lb) -- The force transmitted through a soil mass by intergranular pressures.

Effective porosity, \(n_e \) (D) -- The ratio of: (1) the volume of the voids of a soil mass that can be drained by gravity to (2) the total volume of the mass.

Effective size, \(D_{10} \) (mm or in.) -- Particle diameter corresponding to 10 percent finer on the grain-size curve.

Effective stress -- See stress.

Effective unit weight -- See unit weight.

Elasticity -- The property of a soil by which it (1) resists deformation and (2) recovers all or part of its original form upon removal of the load causing deformation.

Elastic state of equilibrium -- State of stress within a soil mass when the internal resistance of the mass is not fully mobilized.

Engineering properties tests -- A term applied to laboratory tests that provide engineering properties of soils, e.g. permeability, compressibility, and shear strength.

Equipotential line -- Line in a flow net which represents equal piezometric elevations. The sum of pressure head and elevation head is equal at all points along the line.

Equivalent fluid -- A hypothetical fluid having a unit weight such that it will produce a pressure against a lateral support presumed to be equivalent to that produced by the actual soil. This simplified approach is valid only when deformation conditions are such that the pressure increases linearly with depth and the wall friction is neglected.

Equivalent size, \(D \) (mm or in.) -- The diameter of a hypothetical sphere composed of material having the same specific gravity as that of the actual soil particle and of such size that it will settle in a given liquid at the same terminal velocity as the actual soil particle.

Excess hydrostatic pressure -- See hydrostatic pressure.

Exchangeable sodium percentage, ESP (D) -- A measure of the amount of exchangeable sodium relative to the other exchangeable cations in the soil. It is calculated by the formula:

\[
ESP = \frac{\text{exchangeable sodium}}{\text{cation exchange capacity}} \times 100
\]

where terms are expressed in meq/100 g of soil.

Factor of safety

Stability, \(F_s \) (D) -- The ratio of: (1) available shear strength to (2) mobilized shear strength.

Uplift or heave, \(F_h \) (D) -- The ratio of (1) resisting effective pressure to (2) applied uplift pressure.
Field moisture equivalent -- See moisture equivalent.
Fill -- Man-placed deposits of soils or waste materials.
Fill matrix -- The portion of fill material finer than the maximum particle size used in the specified compaction test method.
Filter -- A layer or combination of layers of pervious materials designed and installed in such a manner as to provide drainage, yet prevent the movement of soil particles due to flowing water.
Fine-grained soil -- The minus 3-in. (75 mm) fraction of a soil having a gradation such that 50 percent or more by dry weight passes a No. 200 (75-μm) sieve.
Fines -- Portion of a soil finer than a No. 200 (75-μm) U.S. standard sieve.
Floc -- Loose, open-structured mass formed in a suspension by the aggregation of minute particles.
Flocculation -- The process of forming flocs.
Flocculent structure -- See soil structure.
Flow channel -- The portion of a flow net bounded by two adjacent flow lines.
Flow curve -- The locus of points obtained from a standard liquid limit test and plotted on a graph representing moisture content as ordinate on an arithmetic scale and the number of flows as abscissa on a logarithmic scale.
Flow line -- The path that a particle of water follows in its course of seepage under laminar flow conditions.
Flow net -- A graphical representation of flow lines and equipotential lines used in the study of seepage phenomena.
Flow net square -- See square.
Flow slide -- The failure of a sloped bank of soil in which the movement of the soil mass does not take place along a well-defined surface of sliding.
Footing -- Portion of the foundation of a structure that transmits loads directly to the soil.
Foundation -- (a) Upper part of the earth mass carrying the load of the embankment, or (b) lower part of a structure that transmits the load to the soil.
Free water surface -- See ground water elevation.
Frost action -- Freezing and thawing of moisture in materials and the resultant effects on these materials and on structures of which they are a part or with which they are in contact.
Frost boil -- (a) Softening of soil occurring during a thawing period due to the liberation of water from ice lenses or layers.
(b) The hole formed in flexible pavements by the extrusion of soft soil and melt waters under the action of wheel loads.
(c) Breaking of a highway or airfield pavement under traffic and the ejection of subgrade soil in a soft and soupy condition caused by the melting of ice lenses formed by frost action.
Frost heave -- The raising of a surface due to the accumulation of ice in the underlying soil.

General shear failure -- See shear failure.
Glacial till -- Material deposited by glaciation, usually composed of a wide range of particle sizes, which has not been subjected to the sorting action of water.
Gradation (grain-size distribution) -- Distribution of grain sizes present in a given soil.
Gravel -- Rounded or semirounded particles of rock that will pass a 3-in. (75 mm) and be retained on a No. 4 (4.75 mm) U.S. standard sieve.

Coarse gravel -- Gravel passing 3-in. sieve (75 mm) and retained on 3/4-in. (19 mm) sieve.

Fine gravel -- Gravel passing 3/4-in. (19 mm) sieve and retained on No. 4 (4.75 mm) sieve.

Gravitational water (Ground water) -- See soil water.

Ground water elevation -- Elevation at which the pressure in water is equal to the atmospheric pressure.

Heave -- Upward movement of soil caused by expansion or displacement resulting from phenomena such as: moisture absorption, removal of overburden, driving of piles, and frost action.

Homogeneous mass -- A mass that exhibits essentially the same physical properties at every point throughout the mass.

Honeycomb structure -- See soil structure.

Horizon -- A layer of soil that is distinguishable from adjacent layers by characteristic physical properties such as structure, color, or texture, or by chemical composition, including content of organic matter, or degree of acidity or alkalinity.

"A" horizon -- The uppermost layer of a soil profile from which inorganic colloids and other soluble materials have been leached. Usually contains remnants of organic life.

"B" horizon -- The layer of a soil profile in which material leached from the overlying "A" horizon is accumulated.

"C" horizon -- Undisturbed parent material from which the overlying soil profile has been developed.

Humus -- A brown or black material formed by the partial decomposition of vegetable or animal matter; the organic portion of soil.

Hydraulic gradient, i (D) -- The loss of hydraulic head per unit distance of flow, \(\frac{dh}{dL} \).

Critical hydraulic gradient, \(i_c (D) \) -- Hydraulic gradient at which the intergranular pressure in a mass of cohesionless soil is reduced to zero by the upward flow of water.

Discharge hydraulic gradient, \(i_d (D) \) -- Hydraulic gradient approaching a discharge face parallel to the flow lines.

Hydrostatic pressure, \(u_o (kg/cm^2 \text{ or ksf}) \) -- The pressure in a liquid under static conditions; the product of the unit weight of the liquid and the piezometric head.

Excess hydrostatic pressure, \(u (kg/cm^2 \text{ or ksf}) \) -- The pressure that exists in pore water in excess of the hydrostatic pressure.

Hygroscopic capacity, \(w_c (D) \) -- Ratio of: (1) the weight of water absorbed by a dry soil in a saturated atmosphere at a given temperature to (2) the weight of the oven-dried soil.

Hygroscopic moisture content, \(w_h (D) \) -- The moisture content of an air-dried soil.

Hygroscopic water -- See soil water.

Index tests -- A term applied to laboratory classification and other tests that do not directly measure engineering properties.
Influence factor, I (D) -- A factor (dependent on configuration of load, load distribution, and other considerations) which, when multiplied by the stress intensity of a loaded surface area, provides an estimate of the vertical stress at a point in a soil mass.

Initial consolidation -- See consolidation.

Initial void ratio -- See void ratio.

Intergranular pressure -- See effective stress under stress.

Intermediate principal plane -- See principal plane.

Internal friction -- (kg/cm² or ksf) -- The portion of the shearing strength of a soil indicated by the terms $\bar{\sigma} \tan \phi$ in Coulomb's equation $s = c + \bar{\sigma} \tan \phi$. It is usually considered to be due to the interlocking of the soil grains and the resistance to sliding between the grains.

Isochrone -- A curve showing the distribution of the excess hydrostatic pressure at a given time during a process of consolidation.

Isotropic mass -- A mass having the same property (or properties) in all directions.

Lacustrine deposit -- Material deposited in a fresh water lake and later exposed, either by a lowered water level or by uplifted land.

Laminar flow -- Flow in which head loss is directly proportional to velocity.

Landslide -- The failure of a sloped bank of soil in which the movement of the soil mass takes place along a surface of sliding.

Leaching -- The removal of colloids and soluble minerals and salts from parent material or rock by percolating water.

Linear expansion, LE (D) -- The increase in one dimension of a soil mass, expressed as a percentage of that dimension at the shrinkage limit, when the moisture content is increased from the shrinkage limit to any given moisture content.

Linear shrinkage, LS (D) -- Decrease in one dimension of a soil mass, expressed as a percentage of the original dimension, when the moisture content is reduced from a given value to the shrinkage limit.

Liquefaction -- The sudden large decrease of the shearing resistance of a cohesionless soil. It is caused by a collapse of the structure by shock or other type of strain and is associated with a sudden but temporary increase of the pore fluid pressure. It involves a temporary transformation of the material into a fluid mass.

Liquid limit, LL (D) -- (a) The moisture content corresponding to the arbitrary limit between the liquid and plastic states of consistency of a soil.

(b) The moisture content at which a pat of soil, cut by a groove of standard dimensions, will flow together for a distance of 1/2 in. under the impact of 25 blows in a standard liquid limit apparatus.

Liquidity index, LI (D) -- The ratio of: (1) the natural moisture content of a soil minus its plastic limit to (2) its plasticity index.

Local shear failure -- See shear failure.

Loess -- A uniform aeolian deposit of silty material having an open structure and relatively high cohesion at natural moisture content due to cementation by clay or calcareous material at grain contacts. A characteristic of loess deposits is that they can stand with nearly vertical slopes.

Major principal plane -- See principal plane.
Major principal stress -- See stress.
Mass density, γ_t (g/cm3 orpcf) -- Dry unit weight of total soil mass.
Maximum dry unit weight -- See unit weight.
Maximum preconsolidation pressure -- See preconsolidation pressure.

Maximum principal effective stress ratio, $\frac{\sigma_1}{\sigma_3}$ (D) -- The ratio of: (1) the major effective principal stress to (2) the minor effective principal stress from a triaxial shear test.

Mechanical analysis -- The process of determining gradation by sieving and hydrometer analyses.

Milliequivalent, meq -- The weight in one thousandth of a gram of an ion or compound that combines with or replaces one gram of hydrogen.

Minor principal plane -- See principal plane.
Minor principal stress -- See stress.
Modified compaction test -- See compaction test.

Modulus of elasticity, E (kg/cm2 or ksf) -- The ratio of stress to strain for a material that deforms in accordance with Hooke's Law (elastic). Numerically equal to the slope of the stress-strain curve.

Initial tangent modulus, E_t (kg/cm2 or ksf) -- The slope of the stress-strain curve at the start of the test.
Secant modulus, E_s (kg/cm2 or ksf) -- The slope of the line connecting two points on the stress-strain curve.
Secant modulus at failure, E_f (kg/cm2 or ksf) -- The slope of the line between the origin and point of failure on the stress-strain curve.

Modulus of shear deformation, G (kg/cm2 or ksf) -- A modulus used in evaluating various states of stress and strain.

$$G = \frac{E}{2(1 + \mu)}$$

where E = modulus of elasticity (kg/cm2 or ksf)
μ = Poisson's ratio (D)

Mohr circle -- A graphical representation of the stresses acting on the various planes at a given point.
Mohr envelope -- The envelope of a series of Mohr circles representing stress conditions at failure for a given material. According to Mohr's rupture hypothesis, a rupture envelope is the locus of points, the co-ordinates of which represent the combinations of normal and shearing stresses that will cause a given material to fail.

Moisture content, w (D) -- The ratio, expressed as a percentage, of: (1) the weight of water in a given soil mass to (2) the weight of solid particles.

Moisture equivalent:
Centrifuge moisture equivalent, CME (D) -- The moisture content of a soil after it has been saturated with water and then subjected for one hour to a force equal to 1000 times that of gravity.
Field moisture equivalent, FME (D) -- The minimum moisture content, expressed as a percentage of the weight of the oven-dried soil, at which a drop of water placed on a smoothed surface of the soil will not immediately be absorbed by the soil but will spread out over the surface and give it a shiny appearance.
Morphology, soil -- The constitution of a soil, including the texture, structure, consistency, color, and other physical, chemical, and biological properties of the various soil horizons that make up a soil profile.

Muck -- An organic soil of very soft consistency.

Mud -- A mixture of soil and water in a fluid or soft, plastic state.

Muskeg -- Level, practically treeless areas supporting dense growth consisting primarily of grasses. The surface of the soil is covered with a layer of partially decayed grass and grass roots which is usually wet and soft when not frozen.

Neutral stress -- See stress.

Normal stress -- See stress.

Normally consolidated soil -- A soil deposit that has never been subjected to an effective pressure greater than the existing overburden pressure.

Non-plastic, NP -- A term applied to a soil that exhibits no plasticity.

Observation well -- A cased or uncased hole in which the ground water surface is measured. May not reflect pressure head in a specific soil layer or at a point as does a piezometer.

Optimum moisture content, \(w_o (D) \) -- The moisture content at which a soil can be compacted to the maximum dry unit weight by a given compactive effort.

Organic clay -- A clay with a high organic content.

Organic silt -- A silt with a high organic content.

Organic soil -- Soil with a high organic content. In general, organic soils are very compressible and have poor load-sustaining properties.

Overconsolidated soil -- A soil deposit that has been subjected to an effective pressure greater than the present effective overburden pressure.

Overconsolidation ratio, OCR (D) -- The ratio of: (1) the maximum past effective pressure to (2) either the computed effective vertical pressure on the sample in the field or the consolidating chamber pressure at the start of a triaxial shear test. Thus, for a normally consolidated soil, OCR = 1.

Oversize fraction, \(P (D) \) -- The portion of a soil in terms of dry weight that is larger than (1) the maximum particle size in the test specimen (e.g., usually plus No. 4 (4.75 mm) or 3/4-inch (19 mm) particles in the compaction test) or (2) the maximum particle size in the sample submitted to the testing facility.

Parent material -- Material from which a pedological soil has been derived.

Passive earth pressure -- See earth pressure.

Path of percolation -- The path that water follows along the surface of contact between the foundation soil and the base of a dam or other structure.

Peat -- An organic soil or material with readily identifiable plant remains. It holds a large quantity of water, is spongy, and is generally brown.

Pedological soil survey -- The areal mapping or delineating of soil based on its physical, chemical, and organic content occurring within approximately the surface six feet (2 m) of the earth's crust. Delineations are based on the classification system established for the U.S. by the Soil Conservation Service.
Penetration resistance, \(p_r \) (kg/cm\(^2\) or ksf) -- The unit load required to produce a penetration into fine-grained soil of at least 3 inches at a rate of 1/2 inch per second by use of a soil penetrometer with attached needle having a flat end of known area.

Penetration resistance curve -- The curve showing the relationship between:
(1) the penetration resistance and (2) the moisture content.

Percent compaction -- The ratio, expressed as a percentage, of:
(1) dry unit weight of a soil to (2) maximum dry unit weight obtained in a compaction test.

Percent consolidation, \(U(D) \) -- The ratio, expressed as a percentage, of:
(1) the amount of consolidation at a given time within a soil mass to
(2) the total amount of consolidation obtainable under a given stress condition.

Percent dispersion (D) -- The ratio, expressed as a percentage, of:
(1) percent naturally dispersed 0.005 mm soil particles as determined by the laboratory dispersion test to
(2) percent total 0.005 mm soil particles as determined by the laboratory hydrometer test.

Percent saturation, \(S(D) \) -- The ratio, expressed as a percentage, of:
(1) the volume of water in a given soil mass to
(2) the total volume of the voids.

Perched water table -- A water table usually of limited area maintained above the normal free water elevation by the presence of an intervening relatively impervious confining stratum.

Permafrost -- Perennially frozen soil.

Permeability -- The property of a porous medium that allows water to flow through it.

\(\phi(D) \) -- The negative logarithm of the effective hydrogen ion concentration -- an index of the acidity or alkalinity of a soil.

Phreatic line -- The free water surface of the zone of seepage.

Piezometer -- An instrument for measuring water pressure at a point.

Piezometric head, \(h_p \) (m or ft) -- The hydrostatic water pressure at a point.

The head is expressed in height to which a water column will rise or lower in a tube exposed to atmospheric pressure.

Piezometric surface -- The trace of a line connecting a series of points of piezometric head.

Pile -- Relatively slender structural element which is driven or otherwise inserted into the soil, usually for the purpose of providing vertical or lateral support. A pile transfers the foundation load to a more competent stratum at a lower elevation.

Pithole test -- A laboratory test for identifying dispersive clay soil wherein distilled water is discharged through a standard-sized hole in a compacted specimen.

Piping -- The movement of soil particles by seepage leading to the development of tunnels.

Plastic deformation -- The deformation of a plastic material beyond the point of recovery, accompanied by continuing deformation with no further increase in stress.

Plastic equilibrium -- State of stress within a soil mass, or a portion thereof, which has been deformed to such an extent that its ultimate shearing resistance is mobilized.

Active state of plastic equilibrium -- Plastic equilibrium obtained by expansion of a mass.

Passive state of plastic equilibrium -- Plastic equilibrium obtained by compression of a mass.
Plasticity -- The property of a soil which allows it to be deformed beyond the point of recovery without cracking or appreciable volume change.

Plasticity index, \(P_i \) (D) -- Numerical difference between the liquid limit and the plastic limit.

Plastic limit, \(P_L \) (D) -- (a) The moisture content corresponding to an arbitrary limit between the plastic and the semisolid states of consistency of a soil.

(b) Moisture content at which a soil being dried will just begin to crumble when rolled into a thread approximately \(\frac{1}{8} \) in. (0.32 mm) in diameter.

Plastic soil -- A soil that exhibits plasticity.

Plastic state -- The range of consistency within which a soil exhibits plastic properties.

Poisson's ratio, \(\mu \) (D) -- The ratio of (1) lateral strain to (2) axial strain in a material when under axial compression.

Pore pressure coefficients (Skempton):

Pore pressure coefficient, \(A \) (D) -- In an undrained soil, the ratio of:

\[A = \frac{\Delta u}{\Delta (\sigma_1 - \sigma_3)} \]

Pore pressure coefficient, \(B \) (D) -- In an undrained triaxial shear test, the ratio of:

\[B = \frac{\Delta u}{\Delta \sigma_3} \]

Pore water pressure -- See neutral stress under stress.

Porosity, \(n \) (D) -- The ratio, expressed as a percentage, of:

(1) the volume of voids of a given soil mass to
(2) the total volume of the soil mass.

Positive cutoff -- A barrier of impervious material extending downward to an essentially impervious lower boundary to intercept completely the path of subsurface seepage.

Potential drop, \(\Delta h \) (m or ft) -- The difference in piezometric head between two equipotential lines.

Preconsolidation pressure, \(P_c \) (kg/cm\(^2\) or ksf) -- The most probable effective pressure to which a soil has been subjected.

Maximum preconsolidation pressure, \(P_c(\text{max}) \) (kg/cm\(^2\) or ksf) -- The maximum preconsolidation pressure as inferred from a void ratio-pressure (log scale) curve using Casagrande's procedure.

Minimum preconsolidation pressure, \(P_c(\text{min}) \) (kg/cm\(^2\) or ksf) -- The least probable preconsolidation pressure as inferred from a consolidation test at the intersection of:

(1) a horizontal line through the initial void ratio and
(2) a projection of the straight-line portion of the void ratio-pressure (log scale) curve.

Pressure, \(p \) (kg/cm\(^2\) or ksf) -- The load divided by the area over which it acts.

Effective pressure, \(\bar{p} \) (kg/cm\(^2\) or ksf) -- The load per unit area which is transmitted from grain to grain in a soil mass. The total pressure minus the effect of uplift, i.e. \(\bar{p} = \frac{P}{A} \).

Pressure bulb -- The zone in a loaded soil mass bounded by an arbitrarily selected isobar of stress.
Primary consolidation -- See consolidation.
Principal plane -- Each of three mutually perpendicular planes through a point in a soil mass on which the shearing stress is zero.
 Intermediate principal plane -- The plane normal to the direction of the intermediate principal stress.
 Major principal plane -- The plane normal to the direction of the major principal stress.
 Minor principal plane -- The plane normal to the direction of the minor principal stress.
Principal stress -- See stress.
Progressive failure -- Failure in which the ultimate shearing resistance is progressively mobilized along the failure surface.
Quick condition -- Condition in which water is flowing upwards with sufficient velocity to reduce significantly the bearing capacity of the soil through a decrease in intergranular pressure.
Radius of influence of a well (m or ft) -- Distance from the center of the well to the closest point at which the piezometric surface is not lowered when pumping has produced the maximum steady rate of flow.
Rebound -- The increase in void ratio due to elastic rebound when a compressive load on a soil or rock mass is reduced.
Recompression -- The decrease in void ratio when a soil, that has been loaded and the load is subsequently reduced, is again subjected to an increase in compressive stress.
Recompression index, C_r (D) -- The slope of the recompression portion of the void ratio-pressure (log scale) curve.
Relative density, D_r (D) -- The ratio, expressed as a percentage, of: (1) the difference between the void ratio of a cohesionless soil in the loosest state and any given void ratio to (2) the difference between its void ratios in the loosest and the densest states.
Remolded soil -- Soil that has had its natural structure modified by manipulation.
Residual soil -- Soil derived in place by weathering of the underlying material.
Rock -- Natural solid mineral matter occurring in large masses or fragments.
Rock flour -- Generally unweathered, non-plastic silt and clay size particles produced by the grinding action of glaciers.
Sand -- Particles of rock that will pass the No. 4 (4.75 mm) sieve and be retained on the No. 200 (75-μm) U.S. standard sieve.
 Coarse sand -- Sand passing the No. 4 sieve and retained on the No. 10 (2.0 mm) sieve.
 Medium sand -- Sand passing the No. 10 sieve and retained on the No. 40 (425-μm) sieve.
 Fine sand -- Sand passing the No. 40 sieve and retained on the No. 200 sieve.
Sand boil -- The ejection of sand and water resulting from piping.
Saturated unit weight -- See unit weight.
Sealing test -- A laboratory test made for the purpose of determining the type and the quantity of additives (chemicals, bentonite, etc.) to mix with a soil and/or the percent compaction to reduce permeability to acceptable limits.
Secondary consolidation -- See consolidation.
Seepage -- The slow movement of gravitational water through soil or rock.
Seepage force, \(J \) (kg or lb) -- The force transmitted to the soil grains by seepage.
Seepage pressure, \(p_s \) (kg/cm\(^2\) or ksf) -- The seepage force per unit area of soil mass.
Seepage velocity -- See velocity.
Seismic force -- An inertial force that is added in stability analyses in an attempt to account for earthquake effects.
Sensitivity -- The effect of remolding on the consistency of a cohesive soil.
Sensitivity ratio, \(S_t \) (D) -- The ratio of: (1) the unconfined compressive strength of an undisturbed specimen of soil to (2) the unconfined compressive strength of a specimen of the same soil after remolding at the same moisture content.
Settlement, \(S \) (m or ft) -- The displacement of a structure due to the compression and deformation of the underlying soil.
Shaking test -- A test used to indicate the presence of significant amounts of rock flour, silt, or very fine sand in a fine-grained soil. It consists of shaking a pat of wet soil, having a consistency of thick paste, in the palm of the hand; observing the surface for a glossy or livery appearance; squeezing the pat; and observing if a rapid apparent drying and subsequent cracking of the soil occurs.
Shape factor, \(S \) (D) -- A characteristic of a flow net which is independent of the permeability and the total head loss; the ratio \(N_f/N_d \).
Shear failure -- Failure in which movement caused by shearing stresses in a soil mass is of sufficient magnitude to destroy or cause serious distress to a structure.
General shear failure -- Failure in which the ultimate strength of the soil is mobilized along the entire potential surface of sliding before the structure supported by the soil is impaired by excessive movement.
Local shear failure -- Failure in which the ultimate shearing strength of the soil is mobilized only locally along the potential surface of sliding at the time the structure supported by the soil is impaired by excessive movement.
Shear strength, \(s \) (kg/cm\(^2\) or ksf) -- The resistance of a soil to shearing stresses.
Shear stress -- See stress.
Shell -- The outer portion of a zoned embankment that provides structural support for the core and seepage control. The material contained in the shell is permeable enough that shear strength is not affected by moisture content.
Shrinkage index, \(SI \) (D) -- The numerical difference between the plastic and the shrinkage limits.
Shrinkage limit, \(SL \) (D) -- The maximum moisture content at which a reduction in moisture content will not cause a decrease in volume of the soil mass.
Shrinkage ratio, \(R \) (D) -- The ratio of: (1) a given volume change, expressed as a percentage of the dry volume, to (2) the corresponding change in moisture content above the shrinkage limit, expressed as a percentage of the weight of the oven-dried soil.
Silt -- Material passing the No. 200 (75-\(\mu \)) U.S. standard sieve that is non-plastic or very slightly plastic and that exhibits little or no strength when air-dried.
Silt size -- That portion of the soil finer than 0.075 mm and coarser than 0.002 mm.

Single-grained structure -- See soil structure.

Skin friction, \(f\) (kg/cm\(^2\) or ksf) -- The frictional resistance developed between soil and a structure.

Slaking -- The process of breaking up or sloughing when soil or rock is immersed in water.

Slickensides -- Surfaces within a soil or rock mass that have been smoothed and striated by shear movements on these surfaces.

Sodium adsorption ratio, SAR (D) -- The ratio of: (1) sodium cations to (2) the square root of one half of the sum of calcium and magnesium cations where all terms refer to the concentrations of the designated soluble cations expressed in meq/liter. It may be expressed by the formula:

\[
\text{SAR} = \frac{Na}{\sqrt{(Ca + Mg)/2}}
\]

Soil -- Sediments or other unconsolidated accumulations of solid particles produced by the physical disintegration and chemical decomposition of rocks and which may or may not contain organic matter.

Soil-forming factors -- Factors, such as parent material, climate, vegetation, topography, and time involved in the transformation of an original geologic deposit into a soil profile.

Soil mechanics -- The application of the laws and the principles of mechanics and hydraulics to engineering problems dealing with soil as an engineering material.

Soil physics -- The organized body of knowledge concerned with the physical characteristics of soil and the methods employed in their determinations.

Soil profile -- Vertical section of a soil showing the nature and sequence of the various layers as developed by deposition or weathering, or both.

Soil stabilization -- Chemical and/or mechanical treatment to increase or maintain the stability of a mass of soil or otherwise to improve its engineering properties.

Soil structure -- The arrangement and the state of aggregation of soil particles in a soil mass.

Flocculent structure -- An arrangement composed of flocs of soil particles instead of individual soil particles.

Honeycomb structure -- An arrangement of soil particles having a comparatively loose, stable structure resembling a honeycomb.

Single-grained structure -- An arrangement of soil particles in which they act individually.

Soil suspension -- Dilute mixture of soil and water.

Soil water -- The water contained in a soil mass. It may exist under pressures ranging from positive to negative.

Hygroscopic water -- The water adsorbed on the surface of soil particles as a thin film that (1) has properties substantially different from ordinary water and (2) is removed by oven drying but not by air drying.

Capillary water -- The water that (1) is under tension in a soil mass and (2) will move with a change in capillary stress.

Gravitational water -- Water that is free to move through a saturated soil mass under the influence of gravity.
Soluble salt content (D) -- The ratio, expressed as a percentage, of: (1) the weight of soluble salts in a soil mass to (2) the weight of the dry soil.

Soluble sodium percentage, SSP (D) -- The ratio, expressed as a percentage, of: (1) sodium in a saturation extract to (2) the sum of calcium, magnesium, sodium, and potassium, all expressed in meq/liter. It may be calculated by the formula:

\[
SSP = \frac{Na}{Ca + Mg + Na + K} \times 100
\]

Specific gravity:

Specific gravity of solids, G_s (D) -- Ratio of: (1) the weight in air of a given volume of soil solids at a stated temperature to (2) the weight in air of an equal volume of distilled water at a stated temperature.

Apparent specific gravity, G_a (D) -- Ratio of: (1) the weight in air of a given volume of the impermeable portion of a permeable material (that is, the solid matter including its impermeable pores or voids) at a stated temperature to (2) the weight in air of an equal volume of distilled water at a stated temperature.

Bulk specific gravity, G_m (D) -- Ratio of: (1) the weight in air of a given volume of a permeable material (including both permeable and impermeable voids normal to the material) at a stated temperature to (2) the weight in air of an equal volume of distilled water at a stated temperature.

Square -- Any curvilinear figure in a flow net that has four sides and the same dimensions in the two primary directions. Also, any figure that can be sub-divided into three squares and a remaining figure similar in shape to the original is called a square.

Standard compaction test -- See compaction test.

Standard penetration test, SPT -- A field procedure in which a 140-lb (63.5 kg) hammer falling a distance of 30 in. (0.76 m) is used to drive a standard split-barrel sampler into the soil. Data are recorded as blows to drive the sampler one foot (ASTM D-1586).

Strain, \(\varepsilon \) (D) -- The change in length per unit of length in a given direction.

Stress, \(\sigma \) (kg/cm² or ksf) -- The force per unit area acting within the soil mass.

Capillary stress, \(u_c \) (kg/cm² or ksf) -- The pore water pressure less than atmospheric values produced by surface tension of pore water acting on the meniscus formed in void spaces between soil particles.

Effective stress, \(\sigma \) (kg/cm² or ksf) -- The average normal force per unit area transmitted from grain to grain of a soil mass. It is the stress that is effective in mobilizing internal friction.

Neutral stress, \(u_w \) (kg/cm² or ksf) -- Stress transmitted through the pore water (water filling the voids of the soil).

Normal stress, \(\sigma \) (kg/cm² or ksf) -- The stress component normal to a given plane.

Principal stress, \(\sigma_1, \sigma_2, \sigma_3 \) (kg/cm² or ksf) -- Stresses acting normal to three mutually perpendicular planes intersecting at a point in a body, on which the shearing stress is zero.

Major principal stress, \(\sigma_1 \) (kg/cm² or ksf) -- The largest (with regard to sign) principal stress.

Minor principal stress, \(\sigma_3 \) (kg/cm² or ksf) -- The smallest (with regard to sign) principal stress.
Intermediate principal stress, \(\sigma_2 \) (kg/cm\(^2\) or ksf) -- The principal stress whose value is neither the largest nor the smallest (with regard to sign) of the three.

Shear stress, \(\tau \) (kg/cm\(^2\) or ksf) -- The stress component tangential to a given plane.

Total stress, \(\sigma \) (kg/cm\(^2\) or ksf) -- The total force per unit area acting within a mass of soil. It is the sum of the neutral and the effective stresses.

Stress path -- A continuous representation of successive states of stress in a triaxial shear test formed by a line or curve connecting a series of stress points.

Subgrade -- The soil prepared and compacted to support a structure or a pavement system.

Submerged unit weight -- See unit weight.

Subsoil -- (a) Soil below a subgrade or fill or (b) the B horizon of soils with distinct profiles.

Superficial velocity -- See velocity.

Swell -- The increase in volume and moisture content of a soil that occurs in the presence of free water when pressure is reduced.

Talus -- Rock fragments mixed with soil at the foot of a natural slope from which they have been separated and moved by the force of gravity.

Thixotropy -- The property of a material that enables it to stiffen in a relatively short time on standing, but upon agitation or manipulation to change to a very soft consistency or to a fluid of high viscosity, the process being completely reversible.

Time curve -- See consolidation-time curve.

Time factor, \(T(D) \) -- Dimensionless factor, utilized in the theory of one-dimensional consolidation, containing the physical constants of a soil stratum influencing its time-rate of consolidation, expressed as follows:

\[
T = \frac{k(1 + e)t}{(a_v)(\gamma_w)(H^2)} = \frac{(c_v)(t)}{H^2}
\]

where:

- \(k \) = coefficient of permeability (cm/s or fps)
- \(e \) = void ratio (dimensionless)
- \(t \) = elapsed time that the stratum has been consolidated (s or day)
- \(a_v \) = coefficient of compressibility (cm\(^2\)/g or sq ft/lb)
- \(\gamma_w \) = unit weight of water (g/cm\(^3\) or pcf)
- \(H \) = thickness of stratum drained on one side only. If stratum is drained on both sides, its thickness equals 2H (cm or ft)
- \(c_v \) = coefficient of consolidation (cm\(^2\)/s or sq ft/day)

Topsoil -- Surface soil, usually containing organic matter.

Total stress -- See stress.

Toughness test -- A visual-manual test performed on the fraction of a soil finer than the No. 40 (425-\(\mu\)m) sieve for the purpose of evaluating consistency near the plastic limit; used as an aid in the field classification and identification of soil.

Transformed flow net -- A flow net whose boundaries have been properly modified (transformed) so that a net consisting of curvilinear squares can be constructed to represent flow conditions in an anisotropic porous medium.
Transition zone -- A relatively thin zone or layer between two adjacent zones or layers of differing permeability. A transition zone provides for seepage between the adjacent layers without movement of soil particles. The gradation of the transition zone may or may not meet filter requirements.

Triaxial shear test -- A test in which a cylindrical specimen of soil encased in an impervious membrane is subjected to a confining pressure and then loaded axially to failure.

Turbulent flow -- That type of flow in which (1) any water particle may move in any direction with respect to any other particle and (2) the head loss is approximately proportional to the second power of the velocity.

Ultimate bearing capacity, q_{ult} (kg/cm2 or ksf) -- The average load per unit of area required to produce failure by rupture of a supporting soil mass.

Unconfined compressive strength, q_u (kg/cm2 or ksf) -- The load per unit of area at which an unconfined prismatic or cylindrical specimen of soil will fail in a simple compression test.

Unconsolidated - undrained test, UU -- A soil shearing test in which the moisture content of the test specimen remains practically unchanged during the application of the confining pressure and the additional axial (or shearing) force.

Underconsolidated soil -- A deposit that is not fully consolidated under the existing overburden pressure.

Undisturbed sample -- A soil sample that has been obtained by methods in which every precaution has been taken to minimize disturbance to the sample.

Unit weight, γ (g/cm3 or pcf) -- Weight per unit volume.

Dry unit weight, γ_a (g/cm3 or pcf) -- The weight of soil solids per unit of total volume of soil mass.

Effective unit weight, γ_e (g/cm3 or pcf) -- The unit weight of a soil which, when multiplied by the height of the overlying column of soil, yields the effective pressure due to the weight of the overburden.

Maximum dry unit weight, γ_{max} (g/cm3 or pcf) -- The dry unit weight defined by the peak of a compaction curve.

Saturated unit weight, γ_{sat} (g/cm3 or pcf) -- The wet unit weight of a soil mass when saturated.

Submerged unit weight, γ_{sub} (g/cm3 or pcf) -- The weight of the solids in air minus the weight of water displaced by the solids per unit of volume of soil mass; the saturated unit weight minus the unit weight of water.

Unit weight of water, γ_w (g/cm3 or pcf) -- The weight per unit volume of water; nominally equal to 1 g/cm3 or 62.4 pcf.

Wet unit weight, γ_m (g/cm3 or pcf) -- The weight (solids plus water) per unit of total volume of soil mass, irrespective of the degree of saturation.

Uplift -- The upward water pressure on a structure.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit symbol.....</td>
<td>u</td>
</tr>
<tr>
<td>Total symbol....</td>
<td>U</td>
</tr>
</tbody>
</table>
Vane shear test -- An in-place shear test in which a rod with thin radial vanes at the end is forced into the soil and the resistance to rotation of the rod is determined.

Varved clay -- Alternating thin layers of silt (or fine sand) and clay formed by variations in sedimentation during the various seasons of the year, often exhibiting contrasting colors when partially dried.

Velocity:

Seepage velocity, \(v_s \) (cm/s or fps) -- The rate of discharge of seepage water through a porous medium per unit area of void space perpendicular to the direction of flow. \(v_s \approx \frac{v}{n} \)

Superficial (discharge) velocity, \(v \) (cm/s or fps) -- Rate of discharge of water through a porous medium per unit of total area perpendicular to the direction of flow.

Virgin compression curve -- Straight line portion of a void ratio-pressure curve when plotted on semi-log paper with pressure on the log scale.

Void -- Space in a soil mass not occupied by solid mineral matter. This space may be occupied by air, water, or other gases or liquids.

Void ratio, \(e \) -- The ratio of: (1) the volume of void space to (2) the volume of solid particles in a given soil mass.

Critical void ratio, \(e_c \) -- The void ratio corresponding to the critical density.

Initial void ratio, \(e_0 \) -- The void ratio at the beginning of a test or in-situ prior to loading.

Void ratio-pressure curve -- A curve representing the relationship between effective pressure and void ratio of a soil as obtained from a consolidation test. The curve has a characteristic shape when plotted on semi-log paper with pressure on the log scale.

Volumetric shrinkage, \(V_s \) -- The decrease in volume, expressed as a percentage of the soil mass when dried, of a soil mass when the moisture content is reduced from a given percentage to the shrinkage limit.

Water table -- See ground water elevation.

Wet unit weight -- See unit weight.

Zero air voids curve -- The curve showing unit weight as a function of moisture content when saturated. Sometimes called the 100 percent saturation curve.

Zoned embankment -- An earth dam embankment zoned by the systematic distribution of soil types according to their strength and permeability characteristics, usually with a central impervious core and shells of greater permeability.
Part B. Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>spacing of relief wells; distance along downstream slope of earth dam from breakout point of top flow line to toe</td>
</tr>
<tr>
<td>a_c</td>
<td>activity index of clay</td>
</tr>
<tr>
<td>a_o</td>
<td>horizontal distance between toe of dam or drain and vertex of basic parabola (Casagrande's phreatic line criteria)</td>
</tr>
<tr>
<td>a_v</td>
<td>coefficient of compressibility</td>
</tr>
<tr>
<td>a_w</td>
<td>area of influence of a well</td>
</tr>
<tr>
<td>A</td>
<td>area</td>
</tr>
<tr>
<td>A_p</td>
<td>pore pressure coefficient (Skempton)</td>
</tr>
<tr>
<td>A_s</td>
<td>area of soil solids in section</td>
</tr>
<tr>
<td>A_v</td>
<td>area of voids in section</td>
</tr>
<tr>
<td>A_w</td>
<td>angstrom unit</td>
</tr>
<tr>
<td>b</td>
<td>horizontal projection of a slope</td>
</tr>
<tr>
<td>B</td>
<td>breadth of foundation; pore pressure coefficient (Skempton)</td>
</tr>
<tr>
<td>B_o</td>
<td>point of intersection of basic parabola and water surface (Casagrande's phreatic line criteria)</td>
</tr>
<tr>
<td>c</td>
<td>unit cohesion</td>
</tr>
<tr>
<td>c_e</td>
<td>effective unit cohesion</td>
</tr>
<tr>
<td>c_e_m</td>
<td>unit cohesion of embankment material</td>
</tr>
<tr>
<td>c_f</td>
<td>unit cohesion of foundation material</td>
</tr>
<tr>
<td>c_v</td>
<td>coefficient of consolidation</td>
</tr>
<tr>
<td>c_c</td>
<td>compression index</td>
</tr>
<tr>
<td>c_r</td>
<td>recompression index</td>
</tr>
<tr>
<td>c_u</td>
<td>coefficient of uniformity</td>
</tr>
<tr>
<td>c_w</td>
<td>Lane's weighted creep ratio</td>
</tr>
<tr>
<td>c_z</td>
<td>coefficient of curvature</td>
</tr>
<tr>
<td>c/b</td>
<td>ratio of: (1) horizontal distance from top of downstream slope to upstream edge of drain to (2) horizontal projection of downstream slope</td>
</tr>
<tr>
<td>C_BR</td>
<td>California bearing ratio</td>
</tr>
<tr>
<td>C_D</td>
<td>consolidated-drained (shear test or shear strength)</td>
</tr>
<tr>
<td>C_E_C</td>
<td>cation exchange capacity</td>
</tr>
<tr>
<td>C_ME</td>
<td>centrifuge moisture equivalent</td>
</tr>
<tr>
<td>C_U</td>
<td>consolidated-undrained (shear test or shear strength)</td>
</tr>
<tr>
<td>C_U</td>
<td>consolidated-undrained shear test with pore pressure measured or shear strength based on measured pore pressure</td>
</tr>
<tr>
<td>C_o</td>
<td>coefficient of secondary consolidation</td>
</tr>
<tr>
<td>d</td>
<td>depth from ground surface to center of compressible stratum; thickness of aquifer</td>
</tr>
<tr>
<td>d'</td>
<td>adjusted depth for arching in clean sand or gravel stratum</td>
</tr>
<tr>
<td>D</td>
<td>diameter; equivalent size (diameter); depth of embedment beneath ground surface (e.g., a footing)</td>
</tr>
<tr>
<td>D_r</td>
<td>relative density</td>
</tr>
<tr>
<td>D_10</td>
<td>effective size (effective diameter)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>D_z</td>
<td>particle diameter where z is a numerical subscript corresponding to 15, 30, etc. percent finer by dry weight effective drawdown in well</td>
</tr>
<tr>
<td>d_{dd}</td>
<td>void ratio; base of natural (or Naperian) logarithms</td>
</tr>
<tr>
<td>e</td>
<td>critical void ratio</td>
</tr>
<tr>
<td>e_0</td>
<td>initial or original void ratio</td>
</tr>
<tr>
<td>e_{max}</td>
<td>void ratio in loosest state</td>
</tr>
<tr>
<td>e_{min}</td>
<td>void ratio in densest state</td>
</tr>
<tr>
<td>E</td>
<td>modulus of elasticity; energy head</td>
</tr>
<tr>
<td>E_i</td>
<td>initial tangent modulus</td>
</tr>
<tr>
<td>E_f</td>
<td>secant modulus at failure</td>
</tr>
<tr>
<td>E_S</td>
<td>secant modulus</td>
</tr>
<tr>
<td>ESP</td>
<td>exchangeable sodium percentage</td>
</tr>
<tr>
<td>f</td>
<td>skin friction (coefficient of friction between soil and structure)</td>
</tr>
<tr>
<td>F</td>
<td>total frictional resistance</td>
</tr>
<tr>
<td>F_h</td>
<td>factor of safety against failure by heaving</td>
</tr>
<tr>
<td>F_S</td>
<td>factor of safety against failure in shear</td>
</tr>
<tr>
<td>FME</td>
<td>field moisture equivalent</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>G</td>
<td>modulus of shear deformation</td>
</tr>
<tr>
<td>G_a</td>
<td>apparent specific gravity</td>
</tr>
<tr>
<td>G_m</td>
<td>bulk specific gravity</td>
</tr>
<tr>
<td>G_s</td>
<td>specific gravity of solids</td>
</tr>
<tr>
<td>h</td>
<td>hydraulic head; capillary head</td>
</tr>
<tr>
<td>Δh</td>
<td>difference in head; potential drop</td>
</tr>
<tr>
<td>h_b</td>
<td>head loss through upstream blanket</td>
</tr>
<tr>
<td>h_c</td>
<td>critical head for failure by piping; capillary rise</td>
</tr>
<tr>
<td>h_e</td>
<td>elevation head</td>
</tr>
<tr>
<td>h_m</td>
<td>head under surface stratum at a point midway between relief wells</td>
</tr>
<tr>
<td>h_o</td>
<td>effective head under surface stratum (blanket) at downstream toe of dam</td>
</tr>
<tr>
<td>h_p</td>
<td>pressure head; piezometric head</td>
</tr>
<tr>
<td>h_v</td>
<td>velocity head</td>
</tr>
<tr>
<td>h_w</td>
<td>head under surface stratum at relief well; head measured in an observation well</td>
</tr>
<tr>
<td>H</td>
<td>height of dam or slope; thickness of compressible stratum</td>
</tr>
<tr>
<td>H_c</td>
<td>critical height</td>
</tr>
<tr>
<td>H_f</td>
<td>thickness of field stratum</td>
</tr>
<tr>
<td>H_l</td>
<td>thickness of laboratory specimen</td>
</tr>
</tbody>
</table>
H_t depth of tension crack

H_u thickness of stratum at U degree of consolidation

H_{50} thickness of stratum at 50% consolidation

i hydraulic gradient

i_c critical hydraulic gradient

i_d discharge (or exit) hydraulic gradient

I influence factor

J seepage force

k coefficient of permeability

k' average coefficient of permeability of anisotropic soils

k_b vertical permeability of blanket material

k_f lateral permeability of aquifer

k_h horizontal permeability

k_v vertical permeability

K_a coefficient of active earth pressure

K_0 coefficient of earth pressure at rest

K_p coefficient of passive earth pressure

L, ℓ length; distance

L_a length of arc

L_c length of chord

L_e linear expansion

L_s linear shrinkage

L_o distance from toe of embankment to exposed aquifer

L_1 effective length of upstream blanket

L_2 total length of base of embankment

L_3 effective length of downstream blanket

L_I liquidity index

LL liquid limit

m horizontal distance from upstream toe of dam to intersection of reservoir water surface and embankment

m_v coefficient of volume compressibility

M moment

n porosity; concentration factor (Boussinesq)

n_e effective porosity

N number of blows/foot (standard penetration test); force normal to failure surface

N_c bearing capacity factors

N_q number of equipotential drops (flow net)

N_f number of flow channels (flow net)

NF non-plastic

OCR overconsolidation ratio
p pressure; unit earth pressure; unit normal pressure;
 contact pressure
Pa unit active earth pressure
Pc preconsolidation pressure
Pc_{\text{max}} maximum preconsolidation pressure
Pc_{\text{min}} minimum preconsolidation pressure
Po present effective overburden pressure
Po unit at rest earth pressure
Pp unit passive earth pressure
Pr penetration resistance
Ps seepage pressure
\bar{P} effective pressure (intergranular pressure)
pH index of acidity or alkalinity of a soil
P total load or force; oversize fraction
\bar{P} effective load or force (P - U)
P_{\text{a}} total active earth pressure
P_{\text{o}} total earth pressure at rest
P_{\text{p}} total passive earth pressure
\Delta P change in unit vertical pressure at a point in a foundation
 due to an embankment, a surcharge load, or an excavation;
 incremental load per unit area
PI plasticity index
PL plastic limit
P_{\text{m}} pressure relief midway between wells
P_{\text{w}} pressure relief at wells
q rate of flow
q_{\text{a}} allowable unit bearing value
q_{\text{ult}} ultimate bearing capacity
q_u unconfined compressive strength
Q quantity of flow
Q_{\text{a}} allowable pile bearing load
Q_{\text{p}} ultimate bearing capacity of a pile
Q_{\text{w}} total discharge of a relief well
r effective radius of well
r_{\text{e}} effective radius of well
r_{\text{m}} radius of meniscus
R resultant force; shrinkage ratio
s shear strength
S percent saturation; total consolidation; settlement
S_t sensitivity ratio
S_u consolidation per foot of compressible stratum
SAR sodium absorption ratio
SI shrinkage index; International System of Units
SL shrinkage limit
SPT standard penetration test
SSP soluble sodium percentage
t
 time

t_f
 field time (consolidation)

t_l
 laboratory time (consolidation)

t_U
 time at U degree of consolidation

T
 force tangent to failure surface; temperature; time factor

T_s
 surface tension

TSS
 total soluble salts

u
 excess unit hydrostatic pressure; unit uplift pressure

\Delta u
 pore pressure difference

u_c
 capillary stress

u_r
 increment of pore water pressure developed during shear

u_0
 hydrostatic pressure

u_w
 neutral stress

U
 percent consolidation; total uplift pressure; degree of pore
 pressure dissipation

U_Z
 consolidation ratio where z is a numerical subscript used to
 designate percent of consolidation

USCS
 unified soil classification symbol (or system)

UU
 unconsolidated-undrained (shear test or shear strength)

v
 velocity; superficial velocity

v_e
 exit velocity

v_s
 seepage velocity

V
 total volume of soil mass; volume

V_a
 volume of air in soil mass

V_s
 volume of solid component of soil in soil mass; volumetric
 shrinkage

V_y
 volume of voids in soil mass

V_w
 volume of water in soil mass

w
 moisture content of total material; bottom width of trench

w_c
 hygroscopic capacity

w_g
 moisture content of oversize material (usually plus No. 4
 fraction)

w_h
 hygroscopic moisture content

w_n
 natural moisture content

w_o
 optimum moisture content for a given compactive effort

w_s
 moisture content at saturation

w_s
 moisture content of soil matrix (usually minus No. 4 fraction)

W
 total weight of soil mass; top width of dam; depth of penetra-
 tion of relief wells into aquifer; weight

W_a
 weight of air in soil mass (usually W_a = 0)

W_s
 weight of solids in soil mass

W_w
 weight of water in soil mass

WL
 ground water elevation (at a given date)

x
 Cartesian coordinate (abscissa or horizontal)
\(y \)
Cartesian coordinate (ordinate or vertical)

\(y_0 \)
ordinate of basic parabola at toe of dam or at drain

\(z \)
ratio of length to height of a slope; depth to a point or plane

\(z \)
thickness of blanket in blanket-aquifer situation

\(\alpha \)
angle of repose; angle of discharge face (from horizontal);
angle of flow line with boundary at exit between materials of different permeabilities (in flow net); contact or wetting angle

\(\beta \)
angle of slope to horizontal; angle of flow line with boundary at entrance between materials of different permeabilities (in flow net)

\(\gamma \)
unit weight (density)

\(\gamma_d \)
dry unit weight of solid component of soil mass

\(\gamma_{ds} \)
dry unit weight of soil matrix fraction

\(\gamma_e \)
effective unit weight

\(\gamma_g \)
bulk dry unit weight of oversize material (usually plus No. 4 fraction)

\(\gamma_m \)
wet unit weight of soil mass

\(\gamma_{max} \)
maximum dry unit weight for a given compactive effort

\(\gamma_{sat} \)
saturated unit weight of soil mass

\(\gamma_{sub} \)
submerged unit weight of solid component of soil mass

\(\gamma_t \)
theoretical dry unit weight of total material (matrix and oversize material); mass dry unit weight

\(\gamma_w \)
unit weight of water

\(\Delta \)
increment

\(\delta \)
angle of external friction

\(\varepsilon \)
strain

\(\theta \)
angle between sloping surface and horizontal (slope = cot \(\theta \))

\(\mu \)
Poisson's ratio; micron (0.001 mm)

\(\pi \)
pi = 3.1416

\(\sigma \)
stress; normal stress; total stress

\(\sigma_1 \)
major principal stress

\(\sigma_2 \)
intermediate principal stress

\(\sigma_3 \)
minor principal stress

\(\sigma^* \)
effective stress

\(\tau \)
shear stress

\(\tau_f \)
shear stress at failure

\(\phi \)
angle of internal friction

\(\phi_e \)
effective angle of internal friction

\(\phi_{fr} \)
angle of internal friction of embankment soil

\(\phi_r \)
angle of internal friction of foundation soil

\(\lambda \)
fraction of the area over which pore water pressure acts

\(\lambda \)
shape factor (flow net)
The following abbreviations should be used only when the meaning is unquestionably clear. When in doubt, the word should be spelled out. Do not use periods after abbreviations except for inch, longitudinal, and number.

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute</td>
<td>abs</td>
</tr>
<tr>
<td>acre(s)</td>
<td>acre(s)</td>
</tr>
<tr>
<td>acre-foot (acre-feet)</td>
<td>acre-ft</td>
</tr>
<tr>
<td>approximate</td>
<td>approx</td>
</tr>
<tr>
<td>atmosphere</td>
<td>atm</td>
</tr>
<tr>
<td>average</td>
<td>avg</td>
</tr>
<tr>
<td>Celsius (Centigrade)</td>
<td>C</td>
</tr>
<tr>
<td>centerline</td>
<td>c</td>
</tr>
<tr>
<td>center to center</td>
<td>c to c</td>
</tr>
<tr>
<td>centimeter(s)</td>
<td>cm</td>
</tr>
<tr>
<td>centimeters per second</td>
<td>cm/s</td>
</tr>
<tr>
<td>circular</td>
<td>cir</td>
</tr>
<tr>
<td>coefficient</td>
<td>coef</td>
</tr>
<tr>
<td>column</td>
<td>col</td>
</tr>
<tr>
<td>constant</td>
<td>const</td>
</tr>
<tr>
<td>cubic</td>
<td>cu</td>
</tr>
<tr>
<td>cubic centimeter(s)</td>
<td>cm³</td>
</tr>
<tr>
<td>cubic feet per day</td>
<td>cfd</td>
</tr>
<tr>
<td>cubic feet per minute</td>
<td>cfm</td>
</tr>
<tr>
<td>cubic feet per second</td>
<td>cfs</td>
</tr>
<tr>
<td>cubic foot (cubic feet)</td>
<td>cu ft</td>
</tr>
<tr>
<td>cubic inch(es)</td>
<td>cu in.</td>
</tr>
<tr>
<td>cubic meter(s)</td>
<td>m³</td>
</tr>
<tr>
<td>cubic yard(s)</td>
<td>cu yd</td>
</tr>
<tr>
<td>cycles per minute</td>
<td>cpm</td>
</tr>
<tr>
<td>cycles per second</td>
<td>cps</td>
</tr>
<tr>
<td>cylinder, cylindrical</td>
<td>cyl</td>
</tr>
<tr>
<td>degree(s)</td>
<td>deg</td>
</tr>
<tr>
<td>diameter</td>
<td>diam</td>
</tr>
<tr>
<td>elevation</td>
<td>el</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>engineer</td>
<td>engr</td>
</tr>
<tr>
<td>equation</td>
<td>eq</td>
</tr>
<tr>
<td>equivalent</td>
<td>equiv</td>
</tr>
<tr>
<td>Fahrenheit</td>
<td>F</td>
</tr>
<tr>
<td>feet per day</td>
<td>fpd</td>
</tr>
<tr>
<td>feet per minute</td>
<td>fpm</td>
</tr>
<tr>
<td>feet per second</td>
<td>fps</td>
</tr>
<tr>
<td>foot (feet)</td>
<td>ft</td>
</tr>
<tr>
<td>foot-pound(s)</td>
<td>ft-lb</td>
</tr>
<tr>
<td>foot-pounds per cubic foot</td>
<td>ft-lb/cu ft</td>
</tr>
<tr>
<td>gallon(s)</td>
<td>gal</td>
</tr>
<tr>
<td>gallons per minute</td>
<td>gpm</td>
</tr>
<tr>
<td>gallons per second</td>
<td>gps</td>
</tr>
<tr>
<td>gram(s)</td>
<td>g</td>
</tr>
<tr>
<td>grams per cubic centimeter</td>
<td>g/cm³</td>
</tr>
<tr>
<td>head</td>
<td>head</td>
</tr>
<tr>
<td>hour(s)</td>
<td>hr</td>
</tr>
<tr>
<td>inch(es)</td>
<td>in.</td>
</tr>
<tr>
<td>inside diameter</td>
<td>ID</td>
</tr>
<tr>
<td>kilogram(s)</td>
<td>kg</td>
</tr>
<tr>
<td>kilograms per square centimeter</td>
<td>kg/cm²</td>
</tr>
<tr>
<td>kilometer(s)</td>
<td>km</td>
</tr>
<tr>
<td>kip(s)</td>
<td>kip(s)</td>
</tr>
<tr>
<td>kips per square foot</td>
<td>ksf</td>
</tr>
<tr>
<td>lateral</td>
<td>lat</td>
</tr>
<tr>
<td>liter(s)</td>
<td>l</td>
</tr>
<tr>
<td>logarithm (base 10)</td>
<td>log</td>
</tr>
<tr>
<td>logarithm (natural)</td>
<td>ln</td>
</tr>
<tr>
<td>longitudinal</td>
<td>long.</td>
</tr>
<tr>
<td>maximum</td>
<td>max</td>
</tr>
<tr>
<td>meter(s)</td>
<td>m</td>
</tr>
<tr>
<td>micron</td>
<td>µm</td>
</tr>
<tr>
<td>miles per hour</td>
<td>mph</td>
</tr>
<tr>
<td>milliequivalent</td>
<td>meq</td>
</tr>
<tr>
<td>milligram(s)</td>
<td>mg</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>milliliter(s)</td>
<td>ml</td>
</tr>
<tr>
<td>millimeter(s)</td>
<td>mm</td>
</tr>
<tr>
<td>million gallons per day</td>
<td>mgd</td>
</tr>
<tr>
<td>minimum</td>
<td>min</td>
</tr>
<tr>
<td>minute</td>
<td>min</td>
</tr>
<tr>
<td>modified</td>
<td>mod</td>
</tr>
<tr>
<td>number</td>
<td>no.</td>
</tr>
<tr>
<td>ounce(s)</td>
<td>oz</td>
</tr>
<tr>
<td>outside diameter</td>
<td>OD</td>
</tr>
<tr>
<td>parts per million</td>
<td>ppm</td>
</tr>
<tr>
<td>perforation(s)</td>
<td>perf</td>
</tr>
<tr>
<td>pound(s)</td>
<td>lb</td>
</tr>
<tr>
<td>pounds per cubic foot</td>
<td>pcf</td>
</tr>
<tr>
<td>pounds per square foot</td>
<td>psf</td>
</tr>
<tr>
<td>pounds per square inch</td>
<td>psi</td>
</tr>
<tr>
<td>radian</td>
<td>rad</td>
</tr>
<tr>
<td>radius</td>
<td>r</td>
</tr>
<tr>
<td>revolutions per minute</td>
<td>rpm</td>
</tr>
<tr>
<td>revolutions per second</td>
<td>rps</td>
</tr>
<tr>
<td>second(s)</td>
<td>s</td>
</tr>
<tr>
<td>specific gravity</td>
<td>sp gr</td>
</tr>
<tr>
<td>square centimeter(s)</td>
<td>cm²</td>
</tr>
<tr>
<td>square foot (square feet)</td>
<td>sq.ft</td>
</tr>
<tr>
<td>square inch(es)</td>
<td>sq in.</td>
</tr>
<tr>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>square mile(s)</td>
<td>sq mi</td>
</tr>
<tr>
<td>standard</td>
<td>std</td>
</tr>
<tr>
<td>temperature</td>
<td>temp</td>
</tr>
<tr>
<td>ton(s)</td>
<td>ton(s)</td>
</tr>
<tr>
<td>tons per square foot</td>
<td>tsf</td>
</tr>
<tr>
<td>total soluble salts</td>
<td>tss</td>
</tr>
<tr>
<td>volume</td>
<td>vol</td>
</tr>
<tr>
<td>weight</td>
<td>wt</td>
</tr>
<tr>
<td>yard(s)</td>
<td>yd</td>
</tr>
<tr>
<td>year(s)</td>
<td>yr</td>
</tr>
</tbody>
</table>
Part D. Common Units and Conversion Factors

1. Units for common usage in SCS soil mechanics.

Length : m or ft
Grain (particle) size : mm or in.
Area : m² or sq ft
Volume : cm³ or cu in.
 m³ or cu ft
Weight/force : kg or lb
Time : s or day
Pressure/stress : kg/cm² or ksf
Unit weight (density) : g/cm³ or pcf
Permeability/velocity : cm/s or fps
Coefficients : cm²/g or sq ft/lb (aᵥ and mᵥ)
 cm²/s or sq ft/day (cᵥ)

2. Conversion factors.

Length : 1 in. = 25.40 mm
 " = 2.540 cm
 " = 2.540 x 10⁻² m
1 ft = 30.48 cm
 " = 3.048 x 10⁻¹ m
1 micron = 1 x 10⁻⁶ mm
1 m = 39.37 in.
 " = 3.28 ft

Area : 1 sq in. = 6.452 cm²
1 sq ft = 9.29 x 10² cm²
 " = 9.29 x 10⁻² m²
1 cm² = 1.55 x 10⁻¹ sq in.
1 m² = 10.76 sq ft

Volume : 1 cu in. = 16.387 cm³
1 cu ft = 2.832 x 10⁻² m³
1 cm³ = 1 ml
 " = 6.10 x 10⁻² cu in.
1 m³ = 35.31 cu ft
Weight

- 1 lb = 453.6 g
- " = 4.536 x 10^-1 kg
- 1 kip = 1 x 10^3 lb
- " = 4.536 x 10^2 kg
- 1 kg = 2.2046 lb
- " = 2.2046 x 10^-3 kips

Time

- 1 day = 8.6400 x 10^4 s
- 1 s = 1.157 x 10^-5 day

Pressure

- 1 psi = 7.03 x 10^-2 kg/cm^2
- 1 psf = 4.88 x 10^-4 kg/cm^2
- 1 ksf = 4.88 x 10^-1 kg/cm^2
- 1 kg/cm^2 = 2.048 x 10^3 psf
- " = 2.048 ksf

Unit weight (density)

- 1 pcf = 1.602 x 10^-2 g/cm^3
- 1 g/cm^3 = 62.4 pcf

Permeability

- 1 fps = 30.48 cm/s
- 1 fpd = 3.53 x 10^-4 cm/s
- 1 cm/s = 2.835 x 10^3 fpd

Compressibility

Coefficients (e_v, m_v)

- 1 sq ft/lb = 2.048 cm^2/g
- 1 cm^2/g = 4.88 x 10^-1 sq ft/lb

Coefficient of Consolidation (e_v)

- 1 sq ft/day = 1.075 x 10^-2 cm^2/s
- 1 sq in./min = 1.075 x 10^-1 cm^2/s
- 1 cm^2/s = 93.0 sq ft/day
- " = 9.30 sq in./min

Angle

- 1 deg = 1.745 x 10^-2 rad
- 1 rad = 57.30 deg
SOIL MECHANICS -- LEVEL I
MODULE I
UNIFIED SOIL CLASSIFICATION SYSTEM
APPENDIX 4
NARRATION AND SLIDE DESCRIPTION
PART A - TERMS AND DEFINITIONS
This module describes the use of both laboratory data and field procedures to classify soils by the Unified Soil Classification System. The name of this system is often shortened to USCS.

The Unified Soil Classification System was developed to assist in the grouping of soils based on their predicted engineering behavioral characteristics. The USCS is used for classifying soils for engineering works in most countries throughout the world.

The Soil Conservation Service uses this system when classifying soils for most engineering related purposes such as farm ponds, pipe inlets, terraces, and dams.

The USCS is also a vital part of the National Cooperative Soil Survey, such as this one for the District of Columbia, our nation's capitol.

This module consists of three basic parts:

Part A contains the terms and definitions necessary to use the USCS.
Part B explains the use of laboratory data to classify soils in this system.
Part C contains field procedures for identifying and classifying soils using the USCS without laboratory data.

At the completion of Part A you will be able to complete the following objectives:
PART A -- OBJECTIVES

1. Memorize definitions of terms.
2. Define consistency states.
3. Describe how the four basic soil properties of the USCS are obtained in the laboratory.

Objective Number One:
Given a list of terms, state conceptually from memory all definitions necessary to classify soils in the Unified Soil Classification System.

PART A -- OBJECTIVES

1. Memorize definitions and terminology.
2. Define consistency states.
3. Describe how the four basic soil properties of the USCS are obtained in the laboratory.

Objective Number Two:
Define from memory the four states of consistency of a soil.

PART A -- OBJECTIVES

1. Memorize definitions and terminology.
2. Define consistency states.
3. Describe how the four basic soil properties of the USCS are obtained in the laboratory.

Objective Number Three:
Describe how each of the four basic soil properties needed to use the Unified Soil Classification System are determined in the laboratory. These objectives are also listed in your Study Guide, Part A, Activity 1.

To use the Unified Soil Classification System, you must be familiar with the meaning of several terms. Part A of this module defines these terms. It also covers the laboratory test procedures for obtaining the soil data used in classifying soils by the Unified Soil Classification System. The definitions and terms in this module conform to the American Society of Testing and Materials Standard D 653.
The four basic soil properties which may be measured by laboratory tests and are used for classifying soils by the Unified Soil Classification System are:

1. Gradation
2. Plasticity characteristics
3. Water-holding characteristics
4. Organic Characteristics

Most soils consist of a mixture of different sizes of particles. Laboratory tests and field estimates are used to determine what sizes of particles are present in a soil sample and how much of each size particle is present. This determination is referred to as grain size distribution analysis of a soil, the mechanical analysis, or gradation.

Data from the sieve and hydrometer analyses tests are combined to determine what particle sizes are present in a soil sample. This data also determines the amount of each particle size that exists in a soil sample.

In a sieve analysis, a soil sample is processed to remove foreign matter and break down any clods. The sample is weighed and processed through a nested set of sieves. The sieves are progressively finer from top to bottom.

Sieves are labeled in two ways. Sieves for the larger particles are labeled as the length of the side of the square opening in the sieve. This is the 3-inch sieve.

A 3-inch sieve has openings that are exactly 3 inches by 3 inches. Commonly used sieves for gravel size particles are listed in your Study Guide, Part A, Activity 2. Turn to this activity and review before proceeding. Press the pause button to stop the tape. When you have finished, release the pause button to start the tape.
For the Finer particle sizes, sieves are labeled using a sieve number.

The sieve number is the number of openings per lineal inch. Openings are measured from the centers of the wires in the sieve. A Number 4 sieve has 4 equal openings per lineal inch.

The actual opening in the sieve depends on the thickness of wire used in construction of the sieve. The opening in a Number 4 sieve is 0.187 inches, or 4.76 millimeters.

Sieves are constructed with very small openings for measuring very small particle sizes. The smallest sieve commonly used is the Number 200 sieve, which has an opening of 0.074 millimeters. Small sieves clog quickly during use. Sieves smaller than the Number 200 are seldom used because of the clogging problem.

Sieve sizes commonly used for sands are listed in your Study Guide, Part A, Activity 3. Press the pause button to stop the tape. When you have finished this activity, release the pause button to start the tape.

To continue with the sieve analysis procedure, the soil sample to be tested is placed in the top of a set of sieves.

The sieves are then positioned in a mechanical shaker. The soil samples are shaken for at least 10 minutes to completely sort the sample. Testing standards for sieve analysis are listed in the American Society for Testing and Materials (ASTM), Section 4, Volume 04.08.
The weight of soil particles retained on each sieve is measured. This weight is converted into a percentage of the total sample weight. Usually a portion of the sample will be caught in the pan beneath the finest sieve. All percentages are determined on a dry weight rather than a volume basis.

The results of the sieve analysis may be presented in tabular form, as shown in Activity 4, Part A of the Study Guide. Press the pause button to stop the tape. When you have finished reviewing this material, release the pause button to start the tape.

Usually the data is expressed as the percentage of the total sample that is finer than each sieve size, rather than the percentage retained. The percentage finer is commonly referred to as the percent passing. The arithmetic process for converting the percent retained on each sieve into a percent finer for each sieve is illustrated in Part A, Activity 5, of your Study Guide. Please press pause to stop the tape. When you have completed this activity release the pause button to start the tape.

As you remember, sieves with very small openings tend to clog easily. Therefore, a hydrometer analysis is commonly used to determine the amounts and sizes of very small particles finer than No. 200 sieve.

In the hydrometer analysis, a portion of the soil sample finer than the Number 10 sieve is mixed with distilled water and a chemical dispersant in a 1000 milliliter graduated cylinder. This chemical dispersant and agitation are used to completely break up any clumps of soil particles.

The soil is thoroughly mixed in the cylinder with water and the dispersant by shaking for at least one minute. The cylinder is set on a table or other flat surface and a timer is started.
A hydrometer is inserted into the cylinder and readings are taken at predetermined time intervals. The hydrometer measures the specific gravity of the soil-water suspension. As particles settle out of suspension with time, the specific gravity of the suspension changes. These specific gravities may be converted to equivalent particle sizes by using formulas such as Stoke's Law. Using this formula, you can determine the length of time different sizes of particles take to settle out of suspension. For instance, sand size particles will settle out of suspension in less than about 30 seconds.

Particle Size mm	% Finer
.074 | ---
.05 | ---
.02 | ---
.005 | ---
.002 | ---

You may determine from hydrometer readings taken at selected times what percent of the total sample has settled out. A tabulation showing the percent finer for selected sizes of particles can be developed.

Combining results of a sieve analysis and a hydrometer analysis gives a complete grain size distribution. Press the pause button and study the example of a completed grain size distribution analysis located in Part A, Activity 6 of your Study Guide. When you have completed this activity, release the pause button to start the tape.

A graphical representation of the gradation data is frequently prepared. The graph uses a horizontal log scale with grain size prepared. The graph uses a horizontal log scale with grain size in millimeters across the bottom and corresponding sieves across the top. The vertical axis is the percent of the total sample finer than the sieve or particle size being plotted. To gain practice and understanding of this process, use the data shown on Part A, Activity 7 in your Study Guide to plot a grain size distribution curve for an example soil. Press the pause button to stop the tape. When you have finished release the pause button to start the tape.
2. Plasticity Characteristics

3. Water-Holding Characteristics (35)

The next two soil properties measured in the laboratory that are used to classify soils in the Unified Soil Classification System will now be discussed together, plasticity and water-holding characteristics.

(Slide of ball of modeling clay being squeezed) (36)

Plasticity is the property of a soil that allows it to be deformed beyond the point of recovery without crumbling, cracking, or undergoing appreciable volume change. This property may be visualized by imagining a piece of modeling clay which can be reshaped into many configurations by finger pressure. The clay holds its shape after remolding and does not crack or fall apart. It has plasticity.

(Slide of moist sand in hand being squeezed). (37)

Some soils cannot be reshaped or remolded, no matter what their water content. Two examples are clean sands and some silts. These soils are nonplastic. Only the portion of a sample finer than the Number 40 sieve is tested to evaluate plasticity.

Consistency (38)

Consistency is the relative ease with which a soil can be deformed and is dependent on its water content.

Consistency Diagram

Solid Semi - Plas. Liq.
State solid water content (39)

Soils have four states of consistency. These are (1) liquid (2) plastic (3) semi-solid and (4) solid. Consistency varies with the water content of the soil.

Definitions of Water Content, w

\[
\begin{align*}
\text{Wet wt} - \text{Dry wt} \times 100 &= \text{Dry weight of soil} \\
\text{Weight water} &= \text{Dry weight of soil} \times 100
\end{align*}
\]

The water content of a soil is the weight of water in the soil divided by the dry weight of soil solids, expressed as a percentage.
To determine the water content of a soil sample, the moist soil is weighed. It is then placed in an oven regulated to a constant temperature of 110° centigrade, and dried 24 hours or until a constant weight is obtained. The dry soil is then weighed. These values are then used to calculate the water content. For a better understanding of water content, complete Part A, Activity 8 in the Study Guide. Press the pause button to stop the tape. When you have completed this activity, release the pause button to start the tape.

At high water contents, soils have flow characteristics. They are very soft and are in a liquid state of consistency. This occurs at some unique water content and all higher water contents for a particular soil.

At somewhat lower water contents, a soil and water mixture will not have flow characteristics, but will exhibit plasticity characteristics. It can be remolded and shaped without crumbling or cracking. This could occur over a range of water contents. In this range, a soil is in the plastic state of consistency.

Soils will lose their plasticity characteristics at certain lower water contents. They will crack or crumble when an attempt is made to remold them. The soil will continue to shrink in volume if permitted to dry further, however. This is the semi-solid state of consistency.

At some point, additional drying of a soil mass ceases to cause additional shrinkage. Below this water content, soils are in the solid state of consistency. Press the pause button and carefully study Activity 9 in your Study Guide on Plasticity and Consistency. When you have finished, release the pause button to start the tape.

A series of laboratory tests devised by a Swedish scientist named Atterberg are used to define the water contents at which soils change from one state of consistency to another. The three tests are: (1) liquid limit test, (2) plastic limit test, and (3) shrinkage limit test.
The water content that serves as the boundary between the liquid state and the plastic state of consistency is called the liquid limit. The liquid limit is generally denoted by LL. At water contents higher than the liquid limit, soils are in the liquid liquid state of consistency.

This testing apparatus is called a liquid limit device. It is used in the laboratory to determine the liquid limit of soils.

Soil is mixed with water and placed in the cup of the liquid limit device. A groove of standard dimensions is cut in the soil pat. Only the portion of a soil sample finer than the Number 40 sieve is used in this test.

The liquid limit is the water content determined when exactly 25 drops (or blows as they are commonly called), of the cup on the base will cause the groove to close for a distance of ½ inch.

The test is usually performed at several water contents with the number of blows to close the groove determined for each water content. At water contents above the liquid limit, the groove will close with fewer than 25 blows. At water contents below the liquid limit, more than 25 blows will be necessary to close the groove.

A curve is developed by plotting the number of blows versus water content, and the liquid limit interpolated as the water content at 25 blows. The plot consists of a logarithmic scale used for the number of blows, N, and an arithmetic scale for water content W in per cent.

Liquid limit water contents less than 16 percent cannot be accurately and reliably measured. Soils with liquid limit values less than 16 percent are nonplastic. Liquid limit water contents may exceed 100 per cent. Some soils have liquid limit water contents of over 400 per cent.
Activity 10 of your Study Guide summarizes information on the liquid limit definition and test procedure. Press the pause button to stop the tape and review this material. When you have completed this activity start the tape.

The plastic limit is the water content that serves as the boundary between the plastic and semi-solid states of consistency of a soil. The plastic limit test is used to determine this water content. The plastic limit is generally abbreviated as PL.

The plastic limit is the water content at which a 1/8 inch diameter thread of soil begins to crack or crumble when rolled on a glass plate. At higher water contents, the thread will not crumble or crack. If a thread 1/8 inch in diameter cannot be formed at any water content, the soil is nonplastic.

Plasticity Index, or PI, is the numerical difference between the liquid limit and the plastic limit water contents. It identifies the range of water contents over which a soil has plastic behavior.

Activity 11 of your Study Guide has detailed information on the plastic limit test and plasticity index. Press pause and review this activity. When you have completed this activity release the pause button to start the tape.

The shrinkage limit defines the water content separating the semi-solid and solid states of consistency. It is the water content below which additional drying of a soil sample provides no further shrinkage.

This test has fewer uses than the other Atterberg limit tests and is seldom performed by soil mechanics laboratories. The determination of the shrinkage limit is not necessary to classify a soil in the USCS. However, this brief discussion will help you in the understanding the total behavior of a soil with respect to its water content. Please review and complete Activity 12, Part A of the Study Guide. Press the pause button to stop the tape. When you have completed this activity release the pause button to start the tape.
4. Organic Characteristics
 a. Odor
 b. Color
 c. LL affected by oven drying (61)

Compare liquid limits of airdried and ovendried soil. (62)

Criteria for Organic Soils
LL oven-dried > 0.75
LL air-dried (63)

Remember? (64)

1. Gradation
2. Plasticity characteristics
3. Water holding characteristics
4. Organic characteristics (65)

PART A OBJECTIVES?? (66)

Part A -- Objectives
1. List definitions and terminology. (67)

Objective 1 was to list certain definitions associated with soil properties needed to classify a soil in the USCS.

The fourth and last soil property evaluated in the laboratory is the organic characteristic. Organic soils usually are identified by their pungent odor when moist and warm. They usually are dark brown to gray to black in color, and have a liquid limit value that is significantly affected by oven-drying of the soil prior to testing.

The only acceptable criteria in the USCS for evaluating organic soils is to compare the liquid limit obtained from a soil sample that has been oven-dried to that of a sample that has been air-dried.

If the ratio of the oven-dried liquid limit to the air-dried liquid limit is less than 0.75, the soil is organic in the USCS.

Before proceeding, let's review the four soil properties that must be evaluated to classify a soil in the Unified Soil Classification System.

These four properties are:
(1) Gradation
(2) Plasticity characteristics
(3) Water-holding characteristics
(4) Organic characteristics
PART A -- OBJECTIVES

1. List definitions and terminology.
2. Define consistency states.

(68)

PART A -- OBJECTIVES

1. List definitions and terminology.
2. Define consistency states.
3. Describe how the four basic soil properties of the USCS are obtained in the laboratory.

(69)

Part A Activity 13

Before continuing with Part B of this module, complete Part A, Activity 13 in your Study Guide.
You may also want to take time to review Part A before proceeding to Part B. Press the pause button and complete Activity 13. When you are ready continue to Part B.
SOIL MECHANICS -- LEVEL I

MODULE 1

UNIFIED SOIL CLASSIFICATION SYSTEM

APPENDIX 5

NARRATIVE AND SLIDE DESCRIPTION

(Part B)
SOIL MECHANICS -- LEVEL I
MODULE 1
UNIFIED SOIL CLASSIFICATION SYSTEM
APPENDIX 5
NARRATION AND SLIDES FOR
PART B - USING LABORATORY DATA
PART B
Unified Soil Classification System Using Laboratory Data

Unified Soil Classification System Using Laboratory Data

PART B -- Objectives

Objectives:
1. Identify two essential charts and briefly describe how they are used to classify soils in the Unified Soil Classification System using laboratory data.

Objectives:
1. Identify two essential charts
2. Classify Soils

Objective Number 1 - Identify the two essential charts and briefly describe how they are used to classify soils in the Unified Soil Classification System using laboratory data.

Objective Number 2 - Correctly classify all 25 classes of soil in the USCS using the flow chart, plasticity chart, and given laboratory data. These objectives are also given in your Study Guide, Part B, Activity 1.

USCS is applicable only to particles finer than 3 inches. If a soil has larger particles, the amounts and sizes are determined and reported as auxiliary information. Larger particles are classified as cobbles - 3 inches to 12 inches in size, and boulders - greater than 12 inches in size.

Three Categories
GRAVELS
SANDS
FINES

The USCS is based only on the portion of a soil sample finer than 3 inches. If a soil has larger particles, the amounts and sizes are determined and reported as auxiliary information. Larger particles are classified as cobbles - 3 inches to 12 inches in size, and boulders - greater than 12 inches in size.

The Unified System has three broad categories of soil particle sizes. Gravels are particles finer than 3 inches but larger than the Number 4 sieve. Sands are finer than the Number 4 sieve but larger than the Number 200 sieve. Fines are particles smaller than the Number 200 sieve.

Gravels may be subdivided into coarse and fine gravels.
Sands are subdivided into coarse, medium, and fine sands.

Part B - Activity 2 of your Study Guide shows the particle size definitions used in the Unified System. It also compares the particle size categories with those used in other classification systems.

Part B
Activity 2
(9)

Press the pause button and review Part B, Activity 2 before continuing. When you have completed this activity release the pause button to start the tape.

Fine-Grained Soils
or
...Organic or
...Inorganic
...Plasticity
...Water-holding characteristics
(10)

Fine-grained soils are classified on the basis of their organic, plasticity, and water holding characteristics. Each of these characteristics will be discussed in detail.

Flow Chart
(11)

The basic tool you will use to classify soils in the Unified System is the Flow Chart shown in Part B, Activity 3 in your Study Guide. You should press the pause button and locate this chart. It is extremely important that this information be reviewed before continuing. When you are ready, release the pause button to continue.

Use of Flow Chart
(12)

The Flow Chart is used by beginning at the top of the chart and branching downwards, with decisions based on laboratory data and calculations made as required.

Slide of Flow Chart with fine-grained/coarse-decision blocks highlighted
(13)

The first decision in the Flow Chart is to determine whether the soil you are classifying is a fine-grained or a coarse-grained soil.

Fine-grained soils have 50 percent or more finer than the Number 200 sieve.

Coarse-grained soils have less than 50 percent finer than the Number 200 sieve.
You should now be at this point on the Flow Chart. The fine-grained soils will be discussed first.

Fine-grained soils may be either organic or inorganic.

Organic or Inorganic

You should be at this point on the Flow Chart.

Organic soils are identified by their pungent odor when moist and warm. They are usually dark brown, grayish to black in color. Organic soils also have a liquid limit value that is significantly affected by oven-drying of the soil prior to testing.

When organic soils are suspected on the basis of odor, color, or other characteristics, two liquid limit tests are performed. One is performed on a sample that has been air-dried before preparation for the test. The second liquid limit test is performed on a sample which has been oven-dried at 110 degrees centigrade overnight. If the ratio of the oven-dried sample's liquid limit to the air-dried sample's liquid limit is less than 0.75, the soil is organic.

The two classes of organic soils in the Unified System are OL and OH. OL soils have air-dried liquid limit values less than 50%. OH soils have air-dried liquid limit values equal to or greater than 50%.
Another classification of highly organic soil that is recognized in the Unified Soil Classification System is PEAT. Peat is soil composed primarily of vegetable tissue in various stages of decomposition. It usually has a strong organic odor and a dark-brown to black color. PEAT has a spongy consistency and a fibrous texture. Peat will usually have very small amounts of mineral soil. The Unified symbol for peat is PT.

Inorganic fine-grained soils have 50 percent or more finer than No. 200 sieve and are classified on the basis of plasticity and liquid limit.

The Plasticity Chart is a basic tool used to classify inorganic soils. Press the pause button and locate this chart in your Study Guide, Part B, Activity 5 before continuing. When you are ready, release the pause button to continue.

There are five classes of fine-grained, inorganic soils in the Unified System. Using the soil's liquid limit and plasticity index values and plotting these on the plasticity chart determines the soil's classification. The CL-ML zone of the plasticity chart includes PI values of 4 to 7 inclusive.

A major division on the Plasticity Chart is the liquid limit value of 50%. Soils with liquid limits equal to or greater than 50% are said to have a high liquid limit, LL and have the symbol H. Soil with liquid limit values less than 50% have a low liquid limit and have the symbol, L.
A-Line

The A-line shown on the plasticity chart separates plastic C soils and nonplastic or slightly plastic soils. For a given value of liquid limit, soils plotting on or above the A-line are plastic and have the symbol C and soils plotting below the A-line are slightly plastic or nonplastic and have the symbol M.

U-line = PI Line

Another line of interest on the plasticity chart is the U-line. Based on many tests, liquid limit and plasticity index values from correctly performed tests never plot above this line. It may be referred to as the unrealistic line. If a soil's liquid limit and plasticity index plot above this line, test results should be verified. The uppermost slanted line is the liquid limit equals plasticity index line. No soil can plot above this line.

GROUP NAMES

Descriptive information for fine-grained soils must be given in addition to a Unified Soil Classification symbol. The group name contains other information based on the amounts of sand or gravel in the sample. It includes a primary descriptive term with an appropriate modifier.

Activity 6 in your Study Guide covers the Group Names for the fine-grained soils in the Unified System, including organic soils. Press the pause button and carefully review this information before continuing. Release the pause button to start the tape.

Complete Activity 7 in the Study Guide

Part B, Activity 7 in your Study Guide has several problems illustrating classification of fine-grained soils using both the symbols and the group names. Press the pause button to stop the tape. When you have completed Part B, Activity 7, release the pause button to start the tape.

Coarse-grained Soils

The next division of soils to be discussed is the coarse-grained soils. These are soils with less than 50 percent finer than the number 200 sieve. Press the pause button and locate the flow chart, Activity 3 in your Study Guide before continuing.

Slide of Flow Chart with coarse-grained decision block highlighted.

You should be at this point on your flow chart.
The three subdivisions of coarse-grained soils are:
- CLEAN - coarse-grained soils with less than 5 percent fines
- DUAL - coarse-grained soils with 5 to 12 percent fines
- DIRTY - coarse-grained soils with more than 12 percent fines

The first group of coarse-grained soils to be studied is the clean, coarse-grained group. These soils have less than 5% finer than the Number 200 sieve. You should be at this position on the flow chart.

The next step is to determine the percentages of gravel and sand in the soil sample from the data given. Then determine which size is predominant. That is, is there more gravel or sand present?

\[
\% G = \% \text{ finer than 3" minus } \% \text{ finer than No. 4.}
\]
\[
\% S = \% \text{ finer than No. 4 minus } \% \text{ finer than No. 200.}
\]

You should be at this point on the Flow Chart.

If gravel is predominant, the symbol G is used.
Well-graded or poorly graded

The next step in the classification of clean sands or gravel is to determine whether the soil is well-graded or poorly graded.

You should be at this point on the Flow Chart for clean sands or at this point for clean gravels.

Well-graded sands or gravels have a wide range of particle sizes and about equal amounts of each.

A grain-size distribution curve for a well-graded sand or gravel would have a rather flat slope and be gently curved upwards.

Poorly graded sands or gravels have a narrow range of sizes, or have a range of particle sizes missing from their gradation.
Poorly graded Example (45) One type of grain-size distribution curve for a poorly graded sand or gravel would be rather steep, reflecting a narrow range of particle sizes present.

Gap-graded (46) Another type of poorly graded sand or gravel is called gap-graded. A range of particle sizes is missing from the total gradation.

Coefficient of Uniformity, Cu (47) A coefficient may be calculated from a grain-size distribution curve which partly determines whether a soil is well-graded. This coefficient is the coefficient of uniformity and has the abbreviation, Capital Cee, Small U.

Definition of Cu (48) The coefficient of uniformity is the ratio of the Dee-Sub Sixty size to the Dee-Sub-Ten size of the sample. The larger this value, the flatter is a sample's grain size distribution curve.

Definition of D_{60} (49) The Dee-Sub-Sixty size of a soil is the particle size, expressed in millimeters, of which 60 percent of the soil is finer than that size particle. It is determined from a plotted grain-size distribution curve by reading horizontally from the 60 percent finer coordinate to the grain-size curve. Then move downward from this point and read the grain size in millimeters on the scale at the bottom of the graph.

Definition D_{10} (50) The Dee-Sub-Ten size of the soil is the particle size, expressed in millimeters, at which 10 percent of the soil is finer. It is determined from a plotted grain-size distribution curve. Read horizontally from the 10 percent finer coordinate to the curve. Then read vertically downward to the grain-size in millimeters on the scale at the bottom of the graph. Press the pause button, and complete Part B, Activity 9 of the Study Guide. When you have finished this activity, release the pause button to start the tape.
A second coefficient is also needed to determine whether a soil is well-graded or poorly graded. This is the coefficient of curvature and is calculated from data obtained from a grain size distribution curve. It is abbreviated as Capital Cc, Small Cc.

The coefficient of curvature is the square of the Dee-Sub-Thirty size, expressed in millimeters, divided by the product of the Dee-Sub-Sixty and Dee-Sub-Ten sizes, both expressed in millimeters. The Dee-Sub-Thirty size is obtained in a similar method as the Dee-Sub-Sixty and Dee-Sub-Ten sizes. Press the pause button and complete Part B, Activity 10, in your Study Guide. When you have finished this activity, release the pause button to start the tape.

Both of these coefficients must fall within a prescribed range in order for a sand or gravel to be well-graded. If either of the coefficients is not within the prescribed range, then the soil is poorly graded.

For a sand to be well-graded, the coefficient of uniformity must be greater than 6 and the coefficient of curvature 1 and 3. For a gravel to be well-graded, the coefficient of uniformity must be greater than 4 and the coefficient of curvature between 1 and 3. The criteria is shown on the flow chart.

The symbol, capital W, is used for well-graded and the symbol, capital P, is used for poorly graded.

This completes the classification process for clean, coarse-grained soils. The 4 possible classes are:

- GP - poorly graded, clean gravel
- GW - well - graded, clean gravel
- SP - poorly graded, clean sand, and
- SW - well-graded, clean sand

Press the pause button to stop the tape and Complete Part B, Activity 11 in the Study Guide.
To illustrate the complete classification process for these type soils, refer to Activity 12 for an example of a well-graded gravel, GW. Then complete Part B, Activity 13. When you have finished these activities release the pause button to start the tape.

In addition to the symbol for clean sands and gravels, a group name is also given. The group name consists of a primary descriptive term plus the appropriate modifier.

Study the list of primary descriptive terms and modifiers and the criteria for their use in Part B, Activity 14 in the Study Guide. Stop the tape and review these modifiers. When you are ready release the pause button to start the tape.

Dirty coarse-grained soils will be discussed next. Press the pause button and locate your flow chart. You should be at this location on the flow chart.

Dirty coarse-grained soils have enough fines to influence the engineering behavior characteristics. This effect is more important than whether the soil is well-graded or poorly graded. To classify dirty, coarse-grained soils, you must evaluate both the Atterberg limits of the minus Number 40 fraction and the sand and/or gravel content.

In classifying dirty coarse-grained soils, the first step is to determine which is predominant, sand or gravel. This determination is the same as you made with the clean coarse-grained soils. The percent gravel is equal to the percent finer than the 3-inch sieve minus percent finer than the No. 4 sieve. The percent sand is equal to the percent finer than No. 4 sieve minus the percent finer than the No. 200 sieve.
Once you have determined whether sand or gravel predominates, you must determine whether the Atterberg limits plot on or above the A-line, below the A-line, or in the hatched area of the plasticity chart. Press the pause button and locate the plasticity chart, Activity 5, Part B.

There are six possible classes of dirty, coarse-grain soils. In addition to the symbols for dirty sands and gravels, the group name must be given. This group name consists of a primary descriptive term and the appropriate modifier. Review these criteria in Part B, Activity 15 of your Study Guide. Then complete, Part B, Activity 16. Release the pause button to start the tape when you're ready.

The last group of coarse-grained soils to be discussed in the Unified Classification System is the dual classification group. Press the pause button and locate the flow chart.

The dual classification group of coarse-grained soils have between 5 percent and 12 percent finer than the Number 200 sieve, inclusive. This is the beginning point on the flow chart for classifying these soils.

The engineering behavior of the dual classified group of coarse-grained soils is affected by both gradation characteristics of the coarser particles and by the characteristics of the finer particles. The classification of this group involves determination both of whether the soil is well-graded or poorly graded and whether the fines plot above or below the A-line on the plasticity chart. Both gradation and plasticity affect the engineering behavior of these soils.
Three steps in classifying dual, coarse-grained soils
1. Sand or Gravel
2. Well-graded or poorly graded
3. Above or below A-line?

The process of classifying dual coarse-grained soils is shown in detail on your flow chart. Press the pause button and carefully review these steps on the flow chart, Part B, Activity 3, before continuing. When you are ready, release the pause button to start the tape.

Review Activity 17
Complete Activity 18
(69)

Review the example of a dual-classified soil shown in Part B Activity 17 of your Study Guide. Then, with the given data, complete the classification of the soil shown in Activity 18. Press the pause button to stop the tape. When you have completed these activities release the pause button to continue.

GROUP NAMES FOR DUAL-CLASSIFIED SANDS AND GRAVELS
(71)

In addition to the symbols for dual-classified sands and gravels, the group name must be given.

CRITERIA FOR GROUP NAMES FOR DUAL-CLASSIFIED SANDS AND GRAVELS
(72)

Part B, Activity 19, summarizes the Unified Classification Symbols and group names for the eight possible dual, coarse-grained soils. Press the pause button and review this information. Release the pause button to continue when you have completed reviewing this information.

Complete Activity 20
(73)

Part B, Activity 20, has review questions on terminology and procedures in the use of laboratory data to classify soils by the Unified Soil Classification System. You should be able to answer all questions completely and accurately before proceeding. Stop the tape and complete this activity. If you are having any problems at this point, review the previous activities. When you are ready, start the tape.

Complete Activity 21 in the Study Guide
(74)

Classify the 23 soils shown in Activity 21 using the information given to you previously. Good Luck!
Part B - Objectives
1. Identify and describe the use of flow chart and plasticity chart
2. Correctly classify soils into one of 25

Did you get most of the classifications right? Of course you did. However, to make sure your original objectives in Part B of this module have been reached, let's take another look at them. You are now able to
1. Use the flow chart and plasticity chart.
2. Correctly classify soils in the USCS using laboratory data.

Congratulations! You are now ready to proceed to Part C of this module.
PART C
Unified Soil Classification
Using Field Procedures

(1)

OBJECTIVES

(2)

At the completion of Part C, you will be able to meet the following objectives.

(3)

OBJECTIVES

1. Identify and describe use of flow chart.

Objective number one:
Identify the flow chart and describe how it is used to classify soils in the USCS using field procedures.

(4)

OBJECTIVES

1. Identify and describe use of flow chart procedures.
2. Describe field test procedures.

Objective number two:
Describe from a list each of the important field tests used in classifying soils by the Unified System.

(5)

OBJECTIVES

1. Identify and describe use of flow chart procedures.
2. Describe field test procedures.
3. Classify unknown soils.

Objective number three:
Correctly classify all 14 field classes using the flow chart and field procedures on a set of soil samples. These objectives are also listed in your Study Guide, Part C, Activity 1.

(6)

Introduction

In Part C, you will learn the procedures and the various field tests used to classify soils in the field when you do not have access to laboratory data or testing equipment.
Review Activity 2 in the Study Guide Part C

A reference used in the field classification procedure is the flow chart shown in your Study Guide, Part C, Activity 2. Press the pause button and review the information on the chart. When you have finished, release the pause button to start the tape.

Flow Chart Use

The flow chart for field identification is arranged so that you proceed from left to right on the chart. After you make evaluations of the soil being classified, you arrive at the classification symbol on the right side of the chart.

Fine-grained or Coarse-grained

The first step in field identification is the same as the first step in laboratory identification. You must determine whether the soil has 50 percent or more finer than the Number 200 sieve, or if it has less than 50 percent finer than the Number 200 sieve. Remember that the Unified System is based only on the portion of a soil finer than 3 inches.

Slide of smoothed coarse-grained, pile of sand and gravel mixture.

To determine whether a soil is fine-grained or coarse-grained, spread the soil on a flat surface and visually estimate by weight the amounts of particles larger than the Number 200 sieve and the amounts finer than the Number 200 sieve. The Number 200 sieve size particles (0.074 mm.) are the smallest individual grains that can be seen with the human eye. Remember that one gravel size particle may weigh as much as a considerable volume of finer particles.

Slide of texturing soil by hand.

If it is not readily apparent whether coarse-grained sands or fines predominate, it may be necessary to take a small amount of the soil and mix it with water and rub it between your thumb and index finger. If you can detect a gritty feeling, there will usually be more than 50 percent of particles larger than the Number 200 sieve. Written procedures for determining grain size and gradation are described in Activity 3 of the Study Guide. Review this activity before proceeding.

Fine-grained soil

If a soil is judged to be fine-grained, several tests are used to determine the liquid limit and plasticity characteristics. The following steps detail these tests. They are usually performed in the sequence presented.
The liquid limit test is performed by placing a tablespoon of air-dried soil passing the number 40 sieve in the palm of your hand. A No. 40 sieve would be a useful reference tool to help judge the sizes of particles that need to be removed. A No. 40 sieve opening is about 0.5 mm.

Several observations may be helpful in deciding whether the soil being tested has a high liquid limit (over 50 percent water content) or a low liquid limit (less than 50 percent water content). The speed with which the water penetrates the pile of soil in your hand reflects the water holding characteristics of the soil. Usually, high liquid limit soils will retain the water and it will be slow to penetrate the soil pat. Low liquid limit soils will be penetrated more readily by the wetting front of the water as it is added.

Another observation that is used to evaluate liquid limit is based on comparison of soils with known liquid limit values and developing an experience base. In the field exercise associated with Part C, you will have an opportunity to perform this test on soils with known liquid limit values and develop some expertise. Liquid limit evaluation procedures are given in Activity 4 of your Study Guide. Press the pause button to stop the tape and review this information. When you are finished release the pause button to start the tape.

If the liquid limit determination is made correctly, then the identification of the soils plasticity characteristics, that is whether it plots above or below the A-line, will determine the USCS symbol.

The dilatancy test is performed at the same water content as the liquid limit. Therefore, it is usually expedient to use the same pat of soil that was used in the liquid limit field test. No free water should be visible on the surface of the soil pat when running the dilatancy test.
The dilatency test is performed by vigorously shaking your hand horizontally, striking the hand with the soil pat against the other hand several times.

A dilatent reaction occurs when the soil pat attains a glossy surface appearance, and when the glossy appearance can be made to disappear when the pat is squeezed. High dilatency reactions are typical of soils with low plasticity. Press the pause button and review Part C, Activity 5, of your Study Guide. When you are ready, realease the pause button to start the tape.

The next step in the field identification procedure for fine-grained soils is to add dry soil to the moist pat you have remaining from the dilatency test. Continue to dry the soil pat until you have reached the plastic state of consistency. Dry soil should be added slowly and mixed thoroughly. Determine whether you are approaching the plastic limit by occasionally rolling out a 1/8-inch diameter thread, on a smooth surface. If you can readily roll out a thread, you are still above the plastic limit. Continue to dry the soil by kneading, manipulation, and rolling until a 1/8-inch thread begins to crack or crumble.

Some soils cannot be formed into a thread at any water content. This is typical of low plasticity classifications such as ML soils. The next step when you have reached the plastic limit water content is to assess the toughness of the thread formed. Evaluate whether the thread can be lumped into a ball. Evaluate the fragility of the thread.
High plasticity soils usually have high toughness. [Soils with high toughness are typical of high plasticity soils such as CL and CH, but occasionally, MH soils may have moderately high toughness as well.]

Press the pause button and review the toughness test procedures and guidance on evaluation of the test results along with some helpful suggestions contained in Part C, Activity 6 in your Study Guide. Release the Pause Button to start the tape when you are ready to begin.

Ribbon Test (24) A supplemental test that can be performed at the same water content as the toughness test is the ribbon test. In this test, the moist soil pat is squeezed between the thumb and side of the index finger, forcing a ribbon of soil between the digits.

Slide of ribbon test (25) The strength of the ribbon is evaluated once it has been formed. The Unified soil classes with high plasticity will form a strong ribbon, while the soils with no or limited plasticity will not form a ribbon, or it will be quite weak. A discussion of the ribbon test procedures, evaluations, and possible ratings are given in Part C, Activity 7 of your Study Guide. Press the pause button to stop the tape. Review this activity. Release the pause button to start the tape.

Shine test (26) Another test which may be performed at the same water content is the shine test.

Slide of shine test being performed. (27) The shine test is performed by creating a smooth surface on the soil pat with a knife blade or your fingernail. The shininess of the surface created is evaluated.

Slide of shine test with a shiny surface appearing. (28) Typically, plastic soils will have a shiny appearance, and nonplastic or slightly plastic soils will have a dull shine or have no shine at all.
You should be cautious not to mistake any shininess caused by the presence of mica flakes. In fact, soils containing appreciable amounts of mica will almost always have plasticity indices that plot below the A-line. The shine test procedures, possible ratings and cautions are listed in detail in Activity 8 of the Study Guide. Stop at this time and go to Part C, Activity 8.

The dry strength test is performed on a pat of soil which has been allowed to air dry completely.

The dry pat of soil is crushed with finger pressure and the dry strength evaluated. Plastic soils usually have a high dry crushing strength, while silts or nonplastic soils have low dry crushing strength. Detailed test procedures, possible ratings, and cautions are given in Part C, Activity 9 of your Study Guide. Press the Pause Button and locate this activity. When you have studied this material release the pause button to continue.

Organic soils are usually identified by their organic odor, color, and sometimes a fibrous texture. Press the pause button and carefully review the characteristics of the 2 organic soil classifications (OL and OH) and of the Peat (PT) classification in Part C, Activity 10 and in the Flow Chart in Part C, Activity 2 of the Study Guide. It is important that you review both parts before you continue.

That completes the steps for classifying fine-grained soils. The classification of coarse-grained soils will now be discussed.

Once you have determined that a soil is coarse-grained by either visual inspection or by textural evaluation using your fingers, the next step is to decide whether the soil is predominately a sand or a gravel. You should be at this position on the flow chart.
Visually inspect the soil sample which has been spread on a flat surface. Determine whether more or less than half of the coarse fraction is larger than 1/4 inch. For field procedures, 1/4 inch may be used to approximate the number 4 sieve size. A pocket ruler or scale is useful for this purpose.

You will gain experience in this evaluation by comparing known gradations of soils in the field exercise portion of this module. By examining soils with known gradations, you will be able to develop an experience base.

This is a coarse-grained soil with the sand-size particles predominating.

Ordinarily, using field procedures, it is not possible to identify dual classifications of coarse-grained soils. Therefore, only "clean" or "dirty" classifications are used.
Slide of dirt on hand. To determine whether a coarse-grained soil is clean or dirty, wet a sample of the soil in your palm, then brush off the coarser materials. Dirty samples will leave a stain on your palm. This can often be observed best by allowing the material left in your palm to dry. A powdery residue left on your palm is evidence of sufficient fines in the sample to classify as a dirty sand or gravel.

Slide of soil in beaker of water. A supplemental test which may be useful in this determination is to drop a small amount of the sample in a beaker of clear water. Observe the formation of a cloud in the water. Dirty coarse-grained soils will usually have an observable cloud after about 30 seconds while clean soils will not.

If a soil is judged to be a clean coarse-grained material the next step in your chart is to evaluate whether the sample is well-graded or poorly graded. You should now be at this point on the Flow Chart.

Well-graded Poorly graded
Determination of a soil's gradation characteristics is made visually in the field. A well-graded coarse-grained soil has a wide range of particle sizes and about equal amounts of each size particle. Poorly graded materials have a narrow range of particle sizes, or some particle sizes in the range are missing.

This is a well-graded gravel. Note the wide range of particle sizes present and the equal distribution of these particle sizes.

This is a poorly graded gravel. It has a concentration of large size gravels and small size gravels, but there are no intermediate size gravels in the sample. This type of poorly graded soil is sometimes referred to as gap-graded or skip-graded.
This is a poorly graded sand. The soil has nearly all one size of particle. Remember, the full range of particle sizes for both sand and gravel is quite large. The entire range of particle sizes must be represented in the soil to be well-graded.

Part C, Activity 11 in your Study Guide summarizes the procedures for evaluating clean coarse-grained soils. At this time review only the section on clean soils. After you have reviewed this section of Activity 11, refer to the Flow Chart in Activity 2 and note the 4 possible field classifications of clean, coarse-grained soils, GW, GP, SW, and SP. Press the Pause button and study this information. When you are ready, release the pause button to start the tape.

The next group of soils to be discussed are the dirty coarse-grained soils. Once you have determined that the coarse-grained soil being classified is dirty, you must determine whether the fines in the soil are plastic or nonplastic.

A Number 40 sieve is useful for manually removing coarse sand and gravel from the soil before attempting to evaluate the plasticity of the fines. The evaluation of plasticity must be based on the portion of the soil finer than the Number 40 sieve.

The evaluation of plasticity of the fines in a dirty coarse-grained soil uses the same field test procedures as those used for evaluating the plasticity of fine-grained soils. The toughness test is the most important.
OBJECTIVES

1. Identify and describe flow chart procedures.
2. Describe field test procedures, and
3. Classify unknown soils correctly.

Before you actually practice classifying soils using the field procedures just presented, let's review the objectives of Part C of this module.

Activity 15 contains several questions that will enable you to determine if you are ready to classify some unknown soils. Stop and complete this Activity at this time. When you have finished restart the tape.
Practice

field test
procedures
on soils
from your local
(57)

Now, you have met the first two objectives. Before you are given the information and soils to work on Objective 3, you should practice field classifying of several soils in your local area. Concentrate on the various field procedures to determine clean or dirty, well-graded or poorly graded, and to evaluate plasticity and liquid limit.

ACTIVITY 16 & ACTIVITY 17 (58)

Note that the Study Guide contains two additional activities, 16 and 17. You should notify your supervisor that you are now ready to work on these two activities. The completion of these two activities will require about four to six hours and will generally be given by a designated trainer, usually in small groups. Your supervisor will notify you of the date, time, and location of this training. Be sure to take your Study Guide to the training location as you will need it for reference. Data sheets to be used are included in the Study Guide. Until you are notified of the time for this additional training, continue practicing on soils from your local area.

Continue to Module 2 (59)

Your training facilitator will discuss Activity 17 with you in detail and answer any questions on field classification. While you are waiting for the in-state training sessions, you may want to continue on to Module 2, Qualitative Engineering Behavior.